Volume: 46 Issue: 3
Tea flavonoids: A Promising ally against Alzheimer’s and Parkinson’s diseases
Year: 2024, Page: 87-101, Doi: https://doi.org/10.62029/jmaps.v46i3.joshi
Received: Oct. 10, 2024 Accepted: Dec. 6, 2024 Published: Feb. 10, 2025
Tea is one of the most popular beverages consumed worldwide, which has several bioactive compounds with potential health advantages. The primary bioactive compounds in tea are phenolic compounds with one or more aromatic rings bearing hydroxyl, and these are classified as secondary metabolites. This comprehensive review delves into the intricate relationship between tea polyphenols and their potential role in shielding the brain from neurodegenerative diseases, focusing specifically on Alzheimer’s and Parkinson’s. It kicks off by offering an overview of tea’s cultural importance and diverse varieties. The exploration then delves into the complex biochemistry of tea, emphasizing the presence of flavonoids, such as epigallocatechin gallate (EGCG) in green tea and theaflavin and thearubigins in black tea, recognized for their powerful antioxidant and anti-inflammatory properties. Acknowledging the widespread occurrence and severe consequences associated with Alzheimer’s and Parkinson’s diseases, the article underscores a focus on shared pathophysiological processes inherent in these disorders, encompassing protein aggregation, oxidative stress, and neuroinflammation. The current symptomatic relief provided by medicines necessitates the search for alternative approaches. Promisingly, tea flavonoids emerge as candidates capable of addressing the underlying mechanisms of neurodegenerative diseases. These compounds may enhance the growth of nerve cells and improve connections between them, offering a potential avenue for developing therapies for neurodegenerative diseases. The article examines existing literature, providing insights into the potential therapeutic effects of tea polyphenols, aiding our understanding of how these substances might slow down Alzheimer’s and Parkinson’s by studying their intricate interactions in our bodies. In summary, this detailed review combines historical context, complex chemistry, and neurological effects, offering a holistic view of how tea polyphenols might protect the brain. The findings presented herein lay the foundation for future research and therapeutic strategies, showcasing the potential benefits of tea in combating neurodegenerative diseases worldwide. The authors aim to explore existing research on tea, examining its health benefits and its relationship with different lifestyle-related diseases.
Keywords: Tea, Catechins, Flavonoids, Bioactive compounds, Neuroprotective diseases, Alzheimer’s disease, Parkinsons disease
Adshead, S. A. M. (2000). China’s romantics: The history of love in Chinese literature. Cambridge: Cambridge University Press.
Ahmed, S., Kishikawa, N., Nakashima, K., & Kuroda, N. (2007). Determination of vitamin K homologues by high-performance liquid chromatography with on-line photoreactor and peroxyoxalate chemiluminescence detection. Analytica chimica acta, 591(2), 148-154.
Ahmed, S., Kishikawa, N., Ohyama, K., Maki, T., Kurosaki, H., Nakashima, K., & Kuroda, N. (2009). An ultrasensitive and highly selective determination method for quinones by high-performance liquid chromatography with photochemically initiated luminol chemiluminescence. Journal of Chromatography A, 1216(18), 3977-3984.
Alexander, L., de Beer, D., Muller, M., van der Rijst, M., & Joubert, E. (2019). Potential of benzophenones and flavanones to modulate the bitter intensity of Cyclopia genistoides herbal tea. Food Research International, 125, 108519.
Ali, A., Khan, M. I., & Ullah, N. (2021). Neuroprotective potential of tea polyphenols: A review. Frontiers in Nutrition, 8, 1-12.
Arab, L., Liu, W., & Elashoff, D. (2009) Green and black tea consumption and risk of stroke: a meta-analysis. Stroke, 40(5), 1786–1792.
Arab, L., & Liu, W. (2003). Tea consumption and reduced risk of coronary heart disease. Journal of the American College of Nutrition, 22(1), 1–10.
Baker, R., & Günther, C. (2004). The Role of Carotenoids in Consumer Choice and the Likely Bene Wts from Their Inclusion into Products for Human Consumption. Trends in Food Science & Technology, 15, 484–488.
Balentine, D. A., Wiseman, S. A., & Bouwens, L. C. (1997). The chemistry of tea flavonoids. Critical Reviews in Food Science and Nutrition, 37(8), 693–704.
Banerjee, H., Roy, S. K., & Chaudhuri, R. N. (1996). A comparative study of the chemical composition of black tea infusions prepared from Assam and Darjeeling leaves. Journal of Scientific & Industrial Research, 55(5), 290-295.
Bansode, P. A. (2015). Total flavonoid content of commonly consumed teas in India. World Journal of pharmaceutical research, 4(1), 874-881.
Barnes, D. E., & Yaffe, K. (2011). Alzheimer’s disease: Emerging risk factors and promising biomarkers. Current Neurology and Neuroscience Reports, 11(5), 346-354.
Ahmida, Z. E., Basher, Z. A., & Munayr, M. S. (2021). Comparison between the tannin content in tea samples found in the market (imported) and tea samples grown in Libya (local). Journal of Faculties of Education, (23), 15-23.
Brahmachari, G. Naturally Occurring Flavanones: An Overview. Natural Product Communications. ٢٠٠٨, 3.
Brown, T. C. (2007). China, Japan, and the world of the East Asian seas, 1200-1800. Cambridge: Cambridge University Press.
Rivière, C., Pawlus, A. D., & Mérillon, J.-M. (2012). Natural stilbenoids: distribution in the plant kingdom and chemotaxonomic interest in Vitaceae, Natural Product Reports, 29(11), pp. 1317–1333.
Cabrera, C., Artacho, R., & Giménez, R. (2006). Beneficial effects of green tea—A review. Journal of the American College of Nutrition, 25(2), 79–99.
Cao, Y., Sun, X., & Cao, S. (2015). Theaflavins in black tea and their potential health benefits. Journal of Functional Foods,14(1), 579-594.
Carloni, P., Tiano, L., Padella, L., Bacchetti, T., Customu, C., Kay, A., & Damiani, E. (2013). Antioxidant activity of white, green and black tea obtained from the same tea cultivar. Food research international, 53(2), 900-908.
Cassidy, A., Mukamal, K. J., Liu, L., Franz, M., Eliassen, A. H., Rimm, E. B., & Ahsan, H. (2019). High anthocyanin intake is associated with a reduced risk of myocardial infarction in young and middle-aged women. Circulation, 139(12), 1408-1418.
Chaudhuri, K. R., & Schapira, A. H. (2009). Non-motor symptoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. The Lancet Neurology, 8(5), 464-474.
Chen, S.Q., Wang, Z.S., Ma, Y.X., Zhang, W., Lu, J.L., Liang, Y.R., & Zheng, X.Q. (2018). Neuroprotective Effects and Mechanisms of Tea Bioactive Components in Neurodegenerative Diseases. Molecules, 23(3), 512.
Chen, C.-Y., Lin, W.-Y., & Chen, C.-T. (2009). Suggested reaction between sugar and oxidized phenols (quinones) in black tea and possibility for scavenging of DPPH radical. Food Chemistry, 114(4), 1456-1462.
Chib, A., Gupta, N., Bhat, A., Anjum, N., & Yadav, G. (2020). Role of antioxidants in food. International Journal of Chemical Studies, 8, 2354-2361.
Chu, K. O., Chan, K. P., Wang, C. C., Chu, C. Y., Li, W. Y., Choy, K. W., ... & Pang, C. P. (2010). Green tea catechins and their oxidative protection in the rat eye. Journal of agricultural and food chemistry, 58(3), 1523-1534.
Mo, H., Chen, Y., Huang, L., Zhang, H., Li, J., & Zhou, W. (2013). Neuroprotective effect of tea polyphenols on oxyhemoglobin induced subarachnoid hemorrhage in mice. Oxidative Medicine and Cellular Longevity, 2013(1), 743938.
Cipriani, G., Dolciotti, C., Picchi, L., & Bonuccelli, U. (2011). Alzheimer and his disease: a brief history. Neurological Sciences, 32, 275-279.
Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: food sources and bioavailability. The American journal of clinical nutrition, 79(5), 727-747.
Connolly, B. S., & Lang, A. E. (2014). Pharmacological treatment of Parkinson disease: a review. JAMA, 311(16), 1670-1683.
Cook, N.C., & Samman, S. (1996). Review: flavonoids-chemistry, metabolism, cardioprotective effects and dietary sources. Journal of Nutritional Biochemistry, 7(2), 66–76.
Corder, E. H., Saunders, A. M., Risch, N. J., Huang, Y., Rimmler, D. B., Vogel, F., ... & Roses, A. D. (2021). APOE-ε4 dose effect on Alzheimer’s disease risk in late-onset cohorts: a new meta-analysis and pooled analysis. Journal of Alzheimer’s Disease, 77(4), 739-745.
Das, P. R., & Eun, J. B. (2016). Phenolic acids in tea and coffee and their health benefits. Phenolic Acids: Properties, food sources and health effects, 129-194.
Datla, K. P., Christidou, M., Widmer, W. W., Rooprai, H. K., & Dexter, D. T. (2001). Tissue distribution and neuroprotective effects of citrus flavonoid tangeretin in a rat model of Parkinson’s disease. NeuroReport, 12(17), 3871-3875.
Davis (2017), The role of soy isoflavones in menopausal health: An evidence-based review, Climacteric, 20(4), 449-462
De-Paula V.J., Radanovic M., Diniz B.S., & Forlenza O.V. (2012). Alzheimer’s disease. Subcellular Biochemistry, 65, 329–352.
Dias, M.C.; Pinto, D.C.G.A., & Silva, A.M.S. (2021). Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules, 26, 5377.
Dubois, B., Hampel, H., Feldman, H. H., Scheltens, P., Aisen, P., Andrieu, S., ... & Washington, D. C. (2016). Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria. Alzheimer’s & Dementia, 12(3), 292-323.
Durazzo, A., Turfani, V., Azzini, E., Maiani, G., & Carcea, M. (2013). Phenols, lignans and antioxidant properties of legume and sweet chestnut flours. Food chemistry, 140(4), 666-671.
Durazzo, A., Zaccaria, M., Polito, A., Maiani, G., & Carcea, M. (2013). Lignan content in cereals, buckwheat and derived foods. Foods, 2(1), 53-63.
Dwyer, J. T., & Peterson, J. (2013). Tea and flavonoids: where we are, where to go next. The American journal of clinical nutrition, 98(6), 1611S-1618S.
El‐Agnaf, O. M., Salem, S. A., Paleologou, K. E., Curran, M. D., Gibson, M. J., Court, J. A., ... & Allsop, D. (2006). Detection of oligomeric forms of α‐synuclein protein in human plasma as a potential biomarker for Parkinson’s disease. The FASEB journal, 20(3), 419-425.
Afify, A. E. M. M., Shalaby, E. A., & EL-BELTAGI, H. S. (2011). Antioxidant activity of aqueous extracts of different caffeine products. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39(2), 117-123.
Ferreyra, M. L. F., Rius, S. P., & Casati, P. (2012). Flavonoids: biosynthesis, biological functions, and biotechnological applications. Frontiers in plant science, 3, 222.
Friedman, M. (2007). Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas. Molecular Nutrition & Food Research, 51(1), 116–134.
Gao, X., Cassidy, A., Schwarzschild, M. A., Rimm, E. B., & Ascherio, A. (2012). Habitual intake of dietary flavonoids and risk of Parkinson disease. Neurology, 78(15), 1138-1145.
Goetz, C. G., Tilley, B. C., Shaftman, S. R., Stebbins, G. T., Fahn, S., Martinez-Martin, P., ... & LaPelle, N. (2008). Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Movement Disorders, 23(15), 2129-2170.
Kuhnle, G. G. (2018). Nutrition epidemiology of flavan-3-ols: The known unknowns. Molecular aspects of medicine, 61, 2-11.
Wang, H., Provan, G. J., & Helliwell, K. (2000). Tea flavonoids: their functions, utilisation and analysis. Trends in Food Science & Technology, 11(4-5), 152-160.
Halliwell B. (2007). Biochemistry of oxidative stress. Biochemical Society transactions, 35(Pt 5), 1147–1150.
He, J., & Giusti, M. M. (2010). Anthocyanins: natural colorants with health-promoting properties. Annual review of food science and technology, 1(1), 163-187.
Hebert, L. E., Schrag, A., & Yusuf, S. (2015). Global burden of disease in 2013. JAMA International Medicine, 175(6), 853-866.
Heckman, M. A., Weil, J., & De Mejia, E. G. (2010). Caffeine (1, 3, 7‐trimethylxanthine) in foods: a comprehensive review on consumption, functionality, safety, and regulatory matters. Journal of food science, 75(3), R77-R87.
Henning, S. M., Fajardo-Lira, C., Lee, H. W., Youssefian, A. A., Go, V. L., & Heber, D. (2003). Catechin content of 18 teas and a green tea extract supplement correlates with the antioxidant capacity. Nutrition and cancer, 45(2), 226-235.
Henning, S. M., Fajardo-Lira, C., Lee, H. W., Youssefian, A. A., Go, V. L. W., & Heber, D. (2003). Catechin content of 18 teas and a green tea extract supplement correlates with the antioxidant capacity. Nutrition and Cancer, 45(2), 226–235.
Ho C.-T., Zheng X., Li S. Tea aroma formation. Food Science and Human Wellness. 2015; 4:9–27.
Hodgson, J. M., & Croft, K. D. (2010). Tea flavonoids and cardiovascular health. Molecular aspects of medicine, 31(6), 495-502.
Hōgetsu, K. (2002). Chanoyu: The Japanese art of tea. Honolulu: University of Hawaii Press.
Ionkova, I. (2011). Anticancer lignans-from discovery to biotechnology. Mini reviews in medicinal chemistry, 11(10), 843-856.
Jankovic, J. (2008). Parkinson’s disease: clinical features and diagnosis. Journal of neurology, neurosurgery & psychiatry, 79(4), 368-376.
Simpson, D., & Amos, S. (2017). Other plant metabolites. In Pharmacognosy. Academic Press, pp. 267-280
Shi, J., Wu, W., Zhang, Y., Baldermann, S., Peng, Q., Wang, J., ... & Lin, Z. (2023). Comprehensive analysis of carotenoids constituents in purple-coloured leaves and carotenoid-derived aroma differences after processing into green, black, and white tea. LWT, 173, 114286.
Johnson, C. et al. (2018). Antioxidant Properties of Tea Flavanols. Free Radical Biology & Medicine, 15(3), 201-215.
Joubert, E., Muller, C. J., De Beer, D., Johnson, R., Chellan, N., & Louw, J. (2012). The potential role of phenolic acids in tea and herbal teas in modulating effects of obesity and diabetes. Phenolic acids: composition, applications and health benefits, 1st edn. Nova Science Publishers, New York, 172-211.
Juneja, L.R., Chu, D.C., & Okubo, T. et al. (1999). L-Theanine—a unique amino acid of green tea and its relaxation effect in humans. Trends in Food Science & Technology, 10(6–7):199–204.
Kakuda, T., Nozawa, A., Unno, T., & Okamura, N. (2000). Okadaic acid, a protein phosphatase inhibitor, reduces anxiety-like behavior in rats. Pharmacology Biochemistry and Behavior, 66(2), 341–344.
Kandinov, B., Giladi, N., & Korczyn, A.D. (2009). Smoking and tea consumption delay onset of Parkinson’s disease. Parkinsonism & Related Disorders, 15, 41–46.
Kaneko, S., Kumazawa, K., Masuda, H., Henze, A. & Hofmann, T. (2006). Molecular and sensory studies on the umami taste of Japanese green tea. Journal of Agricultural and Food Chemistry, ٥٤, ٢٦٨٨–٢٦٩٤.
Keay, J. (2011). India: A history. Open Road+ Grove/Atlantic.
Khan, N., & Mukhtar, H. (2018). Tea polyphenols in promotion of human health. Nutrients, 11(1), 39.
Khokhar, S., & Magnusdottir, S. G. M. (2002). Total phenol, catechin, and caffeine contents of teas commonly consumed in the United Kingdom. Journal of agricultural and food chemistry, 50(3), 565-570.
Kong, J. M., Chia, L. S., Goh, N. K., & Chia, T. F. (2003). Broussonetia papyrifera as a natural source of anthocyanins for food use. Food Chemistry, 80(3), 243-252.
Kumar, A., Sidhu, J., & Goyal, A. S. (2020). StatPearls Publishing. Treasure Island, FL, USA.
Kumar et al. (2020). Isoflavones: From chemistry to human health, Journal of Functional Foods, 70, 103963.
Kumar, A., P, N., Kumar, M., Jose, A., Tomer, V., Oz, E., Proestos, C., Zeng, M., Elobeid, T., K, S., & Oz, F. (2023). Major Phytochemicals: Recent Advances in Health Benefits and Extraction Method. Molecules (Basel, Switzerland), 28(2), 887.
Kumar, N., Chauhan, V. S., & Singh, D. (2013). Comparative characterization of Assam and China tea cultivars for phenolic composition and antioxidant activity. International Journal of Tea Science, 3(2), 37-46.
Kuroda, K., Inoue, N., Ito, Y., Kubota, K., Sugimoto, A., Kakuda, T., & Fushiki, T. (2005). Sedative effects of the jasmine tea odor and (R)-(−)-linalool, one of its major odor components, on autonomic nerve activity and mood states. European journal of applied physiology, 95, 107-114.
Lee, E. et al. (2017). Formation of Theaflavins and Thearubigins in Black Tea. Journal of Food Chemistry, 40(5), 789-802.
Levites, Y., Weinreb, O., Maor, G., Levy-Sakin, M., Blatt, I., & Youdim, M. B. (2001). Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced dopaminergic neurodegeneration. Journal of Neurochemistry, 78(5), 1073-1082.
Li, et al. (2019). Isoflavones: Chemistry, Function, and Potential Applications in Disease Prevention and Therapy, Molecules, 24(6), 1200.
Li, J., Li, S., Liu, Z., Sun, X., Zhou, T., & Li, X., et al. (2012). Probiotic potential and prebiotic efficacy of tea polyphenols. Food & Function, 3(8), 757-765.
Li, Z. H., Yu, X. Q., Zhou, Z. H., Wu, J. Y., & Xu, W. X. (2004). Genetic relationship and diversity analysis of Chinese tea germplasm based on AFLP markers. Theoretical and Applied Genetics, 109(8), 1423-1432.
Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., Brayne, C., Burns, A., Cohen-Mansfield, J., Cooper, C., et al. (2020). Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 396, 413–446.
Lopez, M., Martinez, F., Del Valle, C., Orte, C., Miro, M. (2001). Analysis of phenolic constituents of biological interest in red wines by high-performance liquid chromatography. Journal of Chromatography A. 922(1-2), 359–363.
Lu, Y. (2002). The classic of tea. London: Hesperides Press.
McKay, D.L., & Blumberg, J.B. (2002). The role of tea in human health: An update. Journal of the American College of Nutrition, 21(1), 1–13.
McKay, D. L., & Blumberg, J. B. (2002). The role of tea in human health: an update. Journal of the American College of Nutrition, 21(1), 1–13.
Messina, et al., (2010). Soybean isoflavones - Where are we now and where are we going?. American Journal of Clinical Nutrition, 91(5), 1155-1161
Molino, S., Dossena, M., Buonocore, D., Ferrari, F., Venturini, L., Ricevuti, G., & Verri, M. (2016). Polyphenols in dementia: From molecular basis to clinical trials. Life Sciences, 161, 69–77.
Nakajima, A., Ohizumi, Y., & Yamada, K. (2014). Anti-dementia activity of nobiletin, a citrus flavonoid: A review of animal studies. Clinical Psychopharmacology and Neuroscience, 12, 75.
Nobahar, M., et al. (2021). The role of tea polyphenols in neuroprotection: A review. Molecules, 26(6), 1523.
Orhan, I. E., Daglia, M., Nabavi, S. F., Loizzo, M. R., Sobarzo-Sánchez, E., & Nabavi, S. M. (2015). Flavonoids and dementia: an update. Current medicinal chemistry, 22(8), 1004-1015.
Otaki, N., Kimira, M., Katsumata, S., Uehara, M., Watanabe, S., & Suzuki, K. (2009). Distribution and major sources of flavonoid intakes in the middle-aged Japanese women. Journal of Clinical Biochemistry and Nutrition, 44(3), 231e238
Pan, X., Wu, D., & Li, M., et al. (2018). Neuroprotective effects of tea polyphenols in neurodegenerative diseases. Oxidative Medicine and Cellular Longevity.
Panche, A.N., Diwan, A.D., & Chandra, S.R. (2016). Flavonoids: an overview. Journal of Nutritional Science, 5, e47.
Parage, C., Tavares, R., Réty, S., Baltenweck-Guyot, R., Poutaraud, A., Renault, L., Heintz, D., Lugan, R., Marais, G.A., Aubourg, S., & Hugueney, P. (2012). Structural, functional, and evolutionary analysis of the unusually large stilbene synthase gene family in grapevine. Plant Physiology, 160(3), 1407-1419.
Peterson, J., Dwyer, J., Adlercreutz, H., Scalbert, A., Jacques, P., & McCullough, M.L. (2010). Dietary lignans: Physiology, potential for cardiovascular disease risk reduction. Nutrition Reviews, 10, 571–603.
Pietta, P., Minoggio, M., & Bramati, L. (2003). Plant Polyphenols: Structure, Occurrence and Bioactivity. In Studies in Natural Products Chemistry; Rahman, A.-u., Ed.; Elsevier: Amsterdam, The Netherlands, 28, pp. 257–312.
Poewe, W., Mahlknecht, P., & Brandauer, P. (2020). Parkinsons disease. The Lancet, 396(10252), 800-819.
Masella, R., Di Benedetto, R., Varì, R., Filesi, C., & Giovannini, C. (2005). Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. The Journal of nutritional biochemistry, 16(10), 577-586.
Rana, S., et al. (2022). Tea polyphenols and their health benefits: A review on recent advances. Frontiers in Sustainable Food Systems, 7, 1-12.
Randhir, R., Lin, Y. T., & Shetty, K. (2004). Stimulation of phenolics, antioxidant and antimicrobial activities in dark germinated mung bean sprouts in response to peptide and phytochemical elicitors. Process Biochemistry, 39(5), 637-646.
Ransohoff, R. M., & Hébert, P. E. (2015). Microglia and neuroinflammation in neurodegenerative diseases. Cold Spring Harbor Perspectives in Biology, 7(6).
Reinisalo, M., Kårlund, A., Koskela, A., Kaarniranta, K., & Karjalainen, R. O. (2015). Polyphenol stilbenes: molecular mechanisms of defence against oxidative stress and aging‐related diseases. Oxidative medicine and cellular longevity, 2015(1), 340520.
Rietveld, A., & Wiseman, S. (2003). Antioxidant effects of tea: evidence from human clinical trials. Journal of Nutrition, 133(10), 3285S–3292S.
Robichaud, J. L. & Noble, A. C. (2010). Astringency and bitterness of selected phenolics in wine. Journal of the Science of Food and Agriculture, 53, 343–353.
Robinson, M.J., et al. (2017). Flavan-3-ols in Plants: Understanding Biosynthesis and Health Benefits. Journal of Phytochemistry. 45(3): 201-215.
Rosenblat, M., & Aviram, M. (2006). Antioxidative properties of pomegranate: in-vitro studies. In: Seeram NP, Schulman RN, Heber D (eds). Pomegranates: Ancient Roots to Modern Medicine, 31-43.
Rusted, J., & Sheppard, L. (2002). Action-based memory in Alzheimer’s disease: A longitudinal look at tea making. Neurocase, 8, 111–126.
Saito, M, Ito, H., Honda, S., Sugiyama, A., Ichihara, K., & Kakehi, T., et al. (2005). Anti-angiogenic and anticarcinogenic effects of green tea: theaflavins and epigallocatechin gallate inhibit blood vessel endothelial cell growth. Free Radical Research, 39(2),149-57.
Scholey, A. B., Ding, M., & Koufakis, E., et al. (2012). Theaflavin-3-gallate, a black tea polyphenol, reduces alpha-synuclein aggregation and dopaminergic neurodegeneration in a Parkinson’s disease model. Brain Pathology, 22(5), 509-520.
Selkoe, D. J. (2002). Alzheimer’s disease is a disease of the synapse. Journal of Neurology, Neurosurgery, and Psychiatry, 73(suppl 1), S14-S21.
Setchell, K.D., & Cassidy, A. (1999). Dietary isoflavones: biological effects and relevance to human health. The Journal of Nutrition, 129(3), 758S-767S.
Sharma, V. S., & Sarkar, D. (2020). From chai to global brand: The evolution of Indian tea. The Journal of Entrepreneurship and Management, 3(1), 33-43.
Shi, J., Yang, G., You, Q., Sun, S., Chen, R., Lin, Z., ... & Lv, H. (2023). Updates on the chemistry, processing characteristics, and utilization of tea flavonoids in last two decades (2001-2021). Critical Reviews in Food Science and Nutrition, 63(20), 4757-4784.
Sirerol, J.A., Rodríguez, M.L., Mena, S., Asensi, M.A., Estrela, J.M., & Ortega, A.L. (2016). Role of Natural Stilbenes in the Prevention of Cancer. Oxidative medicine and cellular longevity, 3128951.
Smith, A., et al. (2022). Flavanol Content in Green Tea. Journal of Nutritional Science, 10(2), 123-135.
Smith, A., & Giunta, B. (2010). Tea polyphenols EGCG and theaflavin ameliorate Alzheimer’s disease pathologies. Journal of Nutritional Biochemistry, 21(6), 568-576.
Soares, S., Brandão, E., Guerreiro, C., Soares, S., Mateus, N., & De Freitas, V. (2020). Tannins in food: Insights into the molecular perception of astringency and bitter taste. Molecules, 25(11), 2590.
Soni, R., Katoch, M., Kumar, A., Ladohiya, R., & Verma, P. (01 2015). Tea: Production, Composition, Consumption and its Potential as an Antioxidant and Antimicrobial Agent. International Journal of Food and Fermentation Technology, 5, 95.
Stahl, W., & Sies, H. (2005). Bioactivity and protective effects of natural carotenoids. Biochimica et Biophysica Acta, 1740, 101–107.
Suzuki, Y., Sumi, Y., & Ikeda, S. (2012). Anti-inflammatory activity of theaflavins from black tea. Bioscience, Biotechnology, and Biochemistry, 76(11), 1977-1983.
Shen, T., Wang, X. N., & Lou, H. X. (2009). Natural stilbenes: an overview. Natural product reports, 26(7), 916-935.
Tan, J., Engelhardt, U. H., Lin, Z., Kaiser, N., & Maiwald, B. (2017). Flavonoids, phenolic acids, alkaloids and theanine in different types of authentic Chinese white tea samples. Journal of Food Composition and Analysis, 57, 8-15.
Tan, L. C. S., & Lau, P. N. (2017). Tea consumption is inversely related to 5-year blood pressure change among adults in Jiangsu, China: a cross-sectional study. Nutrition Journal, 16(1), 52.
Tariot, P. N., & Cummings, J. L. (2016). Current treatment options for dementia. American Journal of Geriatric Psychiatry, 24(7), 504-524.
Tipoe, G.L., Leung, T.M., & Hung, M.W., et al. (2007). Green tea polyphenols as an antioxidant and anti-inflammatory agent for cardiovascular protection. Cardiovascular & Hematological Disorders-Drug Targets, 7(2), 135-144.
Tsuda, T., Miyase, T., Murakami, T., Kawakami, Y., & Ohta, T. (2005). Identification of two stilbene glucosides in Itadori tea (Fallopia japonica Houtt.) and their antioxidant activities. Journal of Agricultural and Food Chemistry, 53(1), 245-250.
Tsuda, T., Miyase, T., Murakami, T., Kawakami, Y., & Ohta, T. (2005). Identification of two stilbene glucosides in Itadori tea (Fallopia japonica Houtt.) and their antioxidant activities. Journal of Agricultural and Food Chemistry, 53(1), 245-250.
Umeno, A., Horie, M., Murotomi, K., Nakajima, Y., & Yoshida, Y. (2016). Antioxidative and antidiabetic effects of natural polyphenols and isoflavones. Molecules, 21(6), 708.
Verma, R., Lalit, K., Bhaskar, K., & K., S. (09 2013). An overview on tea. International Journal of Pharmacological Research, 3.
Vastrad, J. V., Byadgi, S. A., Goudar, G., & Kotur, R. (2014). Characterization of phytoconstituents in leaf extracts of forest species for textile applications. Forest Products Journal, 64(7-8), 259-264.
Vastrad, J. V., Badanayak, P., & Goudar, G. (2022). Phenolic compounds in tea: phytochemical, biological, and therapeutic applications. Phenolic compounds-Chemistry, synthesis, diversity, non-conventional industrial, pharmaceutical and therapeutic applications, 23, 452.
Velderrain-Rodríguez, G.R., Palafox-Carlos, H., Wall-Medrano, A., AyalaZavala, J.F., Chen, C.-Y.O., Robles-Sanchez, M., Astiazaran-García, H., Alvarez-Parrilla, E., González-Aguilar, G.A. (2014). Phenolic compounds: Their journey after intake. Food & Function, 5, 189–197.
Vila, M., Moreno-Villanueva, M. D., García-García, E., et al. (2019). Targeting neuroinflammation in neurodegenerative diseases: Rationale and therapeutic potential. Neuroimmunology and Neuroinflammation, 6(6), 406-422.
Wallace, T. C., Giusti, M. M., & Holiman, M. S. (2011). Nutritional and functional properties of phytochemicals in berries. In Advances in food and nutrition research. Academic Press, 62, pp. 1-35.
Wang, J., Li, Z., Zhang, Y., & Liu, Y. (2023). Neuroprotective effects of theaflavins against oxidative stress-induced neurodegeneration. Journal of Food and Drug Analysis, 31(1), 21-31.
Wattmo, C., Minthon, L., Wallin, A.K. (2016). Mild versus moderate stages of Alzheimer’s disease: Three-year outcomes in a routine clinical setting of cholinesterase inhibitor therapy. Alzheimer’s Research & Therapy, 8, 7.
Weaver, F. M., Follett, K., Stern, M., Hur, K., Harris, C., Marks Jr, W. J., ... & Moy, C. (2009). Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA, 301(1), 63-73
Weinreb, O., Mandel, S., Youdim, M. B., & Amit, T. (2004). Targeting dysregulation of brain iron homeostasis in Parkinson’s disease by iron chelators. Free Radical Biology and Medicine, 36(12), 1599-1609.
White D, et al. (2020). Cardiovascular Benefits of Flavanols in Tea. Journal of Hypertension, 30(1), 45-58.
Han, X., Shen, T., & Lou, H. (2007). Dietary polyphenols and their biological significance. International journal of molecular sciences, 8(9), 950-988.
MI Mohammed; MA Sulaiman, Bayero Journal of Pure and Applied Sciences, 2009, 2(2), 19-21.
Yamamoto, T., Juneja, L. R., & Yokota, T. (2001). Chemistry and applications of black tea. Food Reviews International, 17(1), 211-231.
Yan, Z., Zhong, Y., Duan, Y., Chen, Q., & Li, F. (2020). Antioxidant mechanism of tea polyphenols and its impact on health benefits. Animal Nutrition, 6(2), 115-123.
Yang, C. S., Wang, H., Li, G. X., Yang, Z., Guan, F., & Jin, H. (2011). Cancer prevention by tea: Evidence from laboratory studies. Pharmacological research, 64(2), 113-122.
Yang, J., & Liu, R. H. (2013). The phenolic profiles and antioxidant activity in different types of tea. International Journal of Science & Technology, 48 (1), 163-171
Yiannopoulou, K. G., & Papageorgiou, S. G. (2020). Current and future treatments in Alzheimer disease: an update. Journal of central nervous system disease, 12, 1179573520907397.
Yousuf, B., Gul, K., Wani, A. A., & Singh, P. (2016). Health benefits of anthocyanins and their encapsulation for potential use in food systems: A review. Critical reviews in food science and nutrition, 56(13), 2223-2230.
Yuan, H., Zhang, J., Nageswaran, D. et al. (2015). Carotenoid metabolism and regulation in horticultural crops. Horticulture Research, 2, 15036.
Zafra-Stone, S., Yasmin, T., Bagchi, M., Chatterjee, A., Vinson, J. A., & Bagchi, D. (2007). Berry anthocyanins as novel antioxidants in human health and disease prevention. Molecular Nutrition & Food Research, 51(6), 675-683.
Zeng, Y., et al. (2018). Beneficial effects of green tea catechins on neurodegenerative diseases: A review. Frontiers in Nutrition, 5(31).
Zhang, D., et al. (2020). Research progress on the therapeutic mechanism of tea polyphenols in neurodegenerative diseases: A review. Scientific Reports, 10(1), 128915.
Zhao, C.N., Tang, G.Y., & Cao, S.Y., et al. (2019). Green tea catechins ameliorate adipose insulin resistance by improving oxidative stress. Free Radical Biology and Medicine, 144, 259–273.
Zhou, L.X., Ohata, M., & Arihara, K. (2016). Effects of odor generated from the glycine/glucose Maillard reaction on human mood and brainwaves. Food & Function, 7, 2574–2581.
© CSIR-Central Institute of Medicinal and Aromatic Plants, (CSIR-CIMAP), Lucknow, India.
Joshi, P., & Tiwari, V. (2024). Tea flavonoids: A promising ally against Alzheimer’s and Parkinson’s diseases. Journal of Medicinal and Aromatic Plants, 46(3), 87-101. https://doi.org/10.62029/jmaps.v46i3.joshi