Volume: 47 Issue: 2
Synergistic integration of bioinformatics and Ayurveda in obesity and cancer management: Advancements, challenges and future directions
Year: 2025, Page: 58-70, Doi: https://doi.org/10.62029/jmaps.v47i2.jaiswal
Received: April 30, 2025 Accepted: Nov. 12, 2025 Published: Nov. 30, 2025
Obesity is a global health concern linked not only to metabolic disorders but also to several types of cancers. Ayurvedic medicine, an ancient Indian healthcare tradition, presents a wealth of phytoconstituents with potential therapeutic benefits for obesity and related cancers. Recent advances in bioinformatics provide powerful methods for identifying and validating these natural molecules. This review emphasizes the synergistic integration of Ayurveda and bioinformatics, focusing on phytoconstituents such as flavonoids and coumarins, computationally validated as potent pancreatic lipase inhibitors. Virtual screening, molecular docking, QSAR modelling, pharmacophore mapping, and molecular dynamics simulations were employed to predict, validate, and optimise these candidates. Network pharmacology further revealed multitarget potential against obesity-linked cancer pathways involving genes like CXCL12 and LEP. Despite these promising advancements, significant challenges remain, including the chemical complexity of Ayurvedic formulations, limited bioavailability, insufficient translation from computational predictions to experimental validation, and interdisciplinary communication gaps. Addressing these issues through improved databases, refined computational methods, and collaborative frameworks can fully unlock the therapeutic potential of Ayurveda, redefined through the lens of bioinformatics.
Keywords: Ayurvedic, Bioinformatics, Cancer, MD simulation, Obesity.
Arthur, D. E., Ejeh, S., & Uzairu, A. (2020). Quantitative structure-activity relationship (QSAR) and design of novel ligands that demonstrate high potency and target selectivity as protein tyrosine phosphatase 1B (PTP 1B) inhibitors as an effective strategy used to model anti-diabetic agents. Journal of Receptor and Signal Transduction Research, 40(6), 501–520. https://doi.org/10.1080/10799893.2020.1759092.
Boonstra, S., Onck, P. R., & Giessen, E.v (2016). CHARMM TIP3P Water Model Suppresses Peptide Folding by Solvating the Unfolded State. The Journal of Physical Chemistry. B, 120(15), 3692–3698. https://doi.org/10.1021/acs.jpcb.6b01316.
Buchholz, T., & Melzig, M. F. (2015). Polyphenolic Compounds as Pancreatic Lipase Inhibitors. Planta Medica, 81(10), 771–783. https://doi.org/10.1055/s-0035-1546173.
Bugnon, M., Goullieux, M., Röhrig, U. F., Perez, M. A. S., Daina, A., Michielin, O., & Zoete, V. (2023). SwissParam 2023: A Modern Web-Based Tool for Efficient Small Molecule Parametrization. Journal of Chemical Information and Modeling, 63(21), 6469–6475. https://doi.org/10.1021/acs.jcim.3c01053.
Bustos, A. S., Håkansson, A., Linares-Pastén, J. A., Peñarrieta, J. M., & Nilsson, L. (2020). Interaction of quercetin and epigallocatechin gallate (EGCG) aggregates with pancreatic lipase under simplified intestinal conditions. PLOS ONE, 15(4), e0224853. https://doi.org/10.1371/journal.pone.0224853.
de la Garza, A. L., Milagro, F. I., Boque, N., Campión, J., & Martínez, J. A. (2011). Natural inhibitors of pancreatic lipase as new players in obesity treatment. Planta Medica, 77(8), 773–785. https://doi.org/10.1055/s-0030-1270924.
Dennis, G., Sherman, B. T., Hosack, D. A., Yang, J., Gao, W., Lane, H. C., & Lempicki, R. A. (2003). DAVID: Database for annotation, visualization, and integrated discovery. Genome Biology, 4(5), P3. https://doi.org/10.1186/gb-2003-4-5-p3.
DeSantis, C. E., Ma, J., Gaudet, M. M., Newman, L. A., Miller, K. D., Goding Sauer, A., Jemal, A., & Siegel, R. L. (2019). Breast cancer statistics, 2019. CA: A Cancer Journal for Clinicians, 69(6), 438–451. https://doi.org/10.3322/caac.21583.
Engels, M., B., S. B., S., D., & G., G. (2017). Ligand based pharmacophore modeling, virtual screening and molecular docking studies to design novel pancreatic lipase inhibitors. International Journal of Pharmacy and Pharmaceutical Sciences, 9(4), 48–64. https://doi.org/10.22159/ijpps.2017v9i4.16392
Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o.
Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936.
Goel, S., Karthik, K. P., Mahapatra Arun, K., Rajagopala, S., & Gupta, P. K. (2024). Redefining Ayurveda through the lens of bioinformatics: A conference report. International Journal of Ayurveda Research, 5(4), Article 01437112-202405040-00015. https://doi.org/10.4103/ijar.ijar_274_24.
Groner, B., Weber, A., & Mack, L. (2012). Increasing the range of drug targets: Interacting peptides provide leads for the development of oncoprotein inhibitors. Bioengineered, 3(6), 320–325. https://doi.org/10.4161/bioe.21272.
Hossain, M. S., Karuniawati, H., Jairoun, A. A., Urbi, Z., Ooi, J., John, A., Lim, Y. C., Kibria, K. M. K., Mohiuddin, A. K. M., Ming, L. C., Goh, K. W., & Hadi, M. A. (2022). Colorectal Cancer: A Review of Carcinogenesis, Global Epidemiology, Current Challenges, Risk Factors, Preventive and Treatment Strategies. Cancers, 14(7), 1732. https://doi.org/10.3390/cancers14071732.
Hou, X. D., Ge, G. B., Weng, Z. M., Dai, Z. R., Leng, Y. H., Ding, L. L., Jin, L. L., Yu, Y., Cao, Y. F., & Hou, J. (2018). Natural constituents from Cortex Mori Radicis as new pancreatic lipase inhibitors. Bioorganic Chemistry, 80, 577–584. https://doi.org/10.1016/j.bioorg.2018.07.011.
Incio, J., Liu, H., Suboj, P., Chin, S. M., Chen, I. X., Pinter, M., Ng, M. R., Nia, H. T., Grahovac, J., Kao, S., Babykutty, S., Huang, Y., Jung, K., Rahbari, N. N., Han, X., Chauhan, V. P., Martin, J. D., Kahn, J., Huang, P., Desphande, V., … Jain, R. K. (2016). Obesity-Induced Inflammation and Desmoplasia Promote Pancreatic Cancer Progression and Resistance to Chemotherapy. Cancer Discovery, 6(8), 852–869. https://doi.org/10.1158/2159-8290.CD-15-1177.
Islam, A. N. M. S., Sultana, H., Nazmul Hassan Refat, M., Farhana, Z., Abdulbasah Kamil, A., & Meshbahur Rahman, M. (2024). The global burden of overweight-obesity and its association with economic status, benefiting from STEPs survey of WHO member states: A meta-analysis. Preventive Medicine Reports, 46, 102882. https://doi.org/10.1016/j.pmedr.2024.102882.
Jaiswal, S. V., Agarwal, N., & Gupta, M. (2021). In-silico approach for designing novel urea/thiourea and schiff base of quinazolinone derivatives of molecular docking H+/K+-ATPase inhibitors. Results in Chemistry, 3, Article 100186. https://doi.org/10.1016/j.rechem.2021.100186.
Jorgensen, W. L., & Tirado-Rives, J. (1988). The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. Journal of the American Chemical Society, 110(6), 1657-1666 https://doi.org/10.1021/ja00214a001.
Jo, Y. H., Kim, S. B., Liu, Q., Do, S. G., Hwang, B. Y., & Lee, M. K. (2017). Comparison of pancreatic lipase inhibitory isoflavonoids from unripe and ripe fruits of Cudrania tricuspidata. PLOS ONE, 12(3), e0172069. https://doi.org/10.1371/journal.pone.0172069
Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research, 28(1), 27–30. https://doi.org/10.1093/nar/28.1.27.
Klauda, J. B., Venable, R. M., Freites, J. A., O’Connor, J. W., Tobias, D. J., Mondragon-Ramirez, C., Vorobyov, I., MacKerell, A. D., Jr, & Pastor, R. W. (2010). Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. The Journal of Physical Chemistry. B, 114(23), 7830–7843. https://doi.org/10.1021/jp101759q.
Liu, T. T., Liu, X. T., Chen, Q. X., & Shi, Y. (2020). Lipase Inhibitors for Obesity: A Review. Biomedicine & pharmacotherapy = Biomedecine & Pharmacotherapie, 128, 110314. https://doi.org/10.1016/j.biopha.2020.110314.
McClendon, K. S., Riche, D. M., & Uwaifo, G. I. (2009). Orlistat: current status in clinical therapeutics. Expert opinion on drug safety, 8(6), 727–744. https://doi.org/10.1517/14740330903321485.
Misra, S., Saini, M., Ojha, H., Sharma, D., & Sharma, K. (2017). Pharmacophore modelling, atom-based 3D-QSAR generation and virtual screening of molecules projected for mPGES-1 inhibitory activity. SAR and QSAR in environmental research, 28(1), 17–39. https://doi.org/10.1080/1062936X.2016.1273971.
Modanwal, S., & Mishra, N. (2023). Identification of common genes in obesity and cancer through network interaction and targeting those genes by virtual screening approach. Journal of Biomolecular Structure & Dynamics, 41(3), 1109–1127. https://doi.org/10.1080/07391102.2021.2020169.
Modanwal, S., Maurya, A. K., Mishra, S. K., & Mishra, N. (2023). Development of QSAR model using machine learning and molecular docking study of polyphenol derivatives against obesity as pancreatic lipase inhibitor. Journal of Biomolecular Structure & Dynamics, 41(14), 6569–6580. https://doi.org/10.1080/07391102.2022.2109753.
Modanwal, S., Maurya, A. K., Mulpuru, V., & Mishra, N. (2025). Exploring flavonoid derivatives as potential pancreatic lipase inhibitors for obesity management: An in silico and in vitro study. Molecular Diversity, 29(3), 2499–2516. https://doi.org/10.1007/s11030-024-11005-5.
Mukerji M. (2023). Ayurgenomics-based frameworks in precision and integrative medicine: Translational opportunities. Cambridge prisms. Precision Medicine, 1, e29. https://doi.org/10.1017/pcm.2023.15.
Noorolyai, S., Mokhtarzadeh, A., Baghbani, E., Asadi, M., Baghbanzadeh Kojabad, A., Mogaddam, M. M., & Baradaran, B. (2019). The role of microRNAs involved in PI3-kinase signaling pathway in colorectal cancer. Journal of Cellular Physiology, 234(5), 5664–5673. https://doi.org/10.1002/jcp.27415.
Patel, H. M., Noolvi, M. N., Sharma, P., Jaiswal, V., Bansal, S., Lohan, S., Kumar, S. S., Abbot, V., Dhiman, S., & Bhardwaj, V. (2014). Quantitative structure–activity relationship (QSAR) studies as strategic approach in drug discovery. Medicinal Chemistry Research, 23(12), 4991–5007. https://doi.org/10.1007/s00044-014-1072-3.
Patwardhan B. (2014). Bridging Ayurveda with evidence-based scientific approaches in medicine. The EPMA Journal, 5(1), 19. https://doi.org/10.1186/1878-5085-5-19.
Pothuraju, R., Rachagani, S., Junker, W. M., Chaudhary, S., Saraswathi, V., Kaur, S., & Batra, S. K. (2018). Pancreatic cancer associated with obesity and diabetes: an alternative approach for its targeting. Journal of Experimental & Clinical Cancer Research: CR, 37(1), 319. https://doi.org/10.1186/s13046-018-0963-4.
Prasher, B., Gibson, G., & Mukerji, M. (2016). Genomic insights into Ayurvedic and western approaches to personalized medicine. Journal of Genetics, 95(1), 209–228. https://doi.org/10.1007/s12041-015-0607-9.
Raja Durai, D., Sowrirajan, S., Elangovan, N., Alomar, S. Y., Sankar Ganesan, T., Geetha Priya, C., Venkatraman, B. R., & Nawaz, A. (2023). Local energy decomposition (through methanol), biological activity prediction, solvents interaction (DFT) and molecular docking simulation studies of Schiff base: Synthesis, characterization and fluorescence properties. Results in Chemistry, 6, Article 101030. https://doi.org/10.1016/j.rechem.2023.101030.
Rath, L. S. (2006). Ayurinformatics: The application of bioinformatics in the Ayurvedic system of medicine. In Proceedings of the 9th International Conference on Information Technology (ICIT’06) (pp. 21–25). IEEE. https://doi.org/10.1109/ICIT.2006.32.
Sasaki, H., Miura, K., Horii, A., Kaneko, N., Fujibuchi, W., Kiseleva, L., Gu, Z., Murata, Y., Karasawa, H., Mizoi, T., Kobayashi, T., Kinouchi, M., Ohnuma, S., Yazaki, N., Unno, M., & Sasaki, I. (2008). Orthotopic implantation mouse model and cDNA microarray analysis indicates several genes potentially involved in lymph node metastasis of colorectal cancer. Cancer Science, 99(4), 711–719. https://doi.org/10.1111/j.1349-7006.2008.00725.x.
Schrödinger Release 2018-3: Qikprop. New York, NY: Schrödinger, LLC; 2018.
Seyedan, A., Alshawsh, M. A., Alshagga, M. A., Koosha, S., & Mohamed, Z. (2015). Medicinal Plants and Their Inhibitory Activities against Pancreatic Lipase: A Review. Evidence-based complementary and alternative medicine: eCAM, 2015, 973143. https://doi.org/10.1155/2015/973143.
Sharma, T., & Kanwar, S. S. (2018). Phytomolecules for obesity and body weight management. Journal of Biochemistry and Cell Biology, 1(1), 1-8. https://www.omicsonline.org/open-access/phytomolecules-for-obesity-and-body-weight-management-97605.html.
Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504. https://doi.org/10.1101/gr.1239303.
Shristi Modanwal, S. K. T., & Mishra, N. (2020). Drug design against obesity using computer-aided approach. Journal of Drug Delivery and Therapeutics, 10(3), 120–124. https://doi.org/10.22270/jddt.v10i3.4051
Siegel, R. L., Miller, K. D., & Jemal, A. (2019). Cancer statistics, 2019. CA: A Cancer Journal for Clinicians, 69(1), 7–34. https://doi.org/10.3322/caac.21551.
Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P. L., & Ideker, T. (2011). Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics (Oxford, England), 27(3), 431–432. https://doi.org/10.1093/bioinformatics/btq675.
Sun, N. N., Wu, T. Y., & Chau, C. F. (2016). Natural Dietary and Herbal Products in Anti-Obesity Treatment. Molecules (Basel, Switzerland), 21(10), 1351. https://doi.org/10.3390/molecules21101351.
Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., & Mering, C. V. (2019). STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607–D613. https://doi.org/10.1093/nar/gky1131.
Szklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., Gable, A. L., Fang, T., Doncheva, N. T., Pyysalo, S., Bork, P., Jensen, L. J., & von Mering, C. (2023). The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Research, 51(D1), D638–D646. https://doi.org/10.1093/nar/gkac1000.
Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291.
Veeramachaneni, G. K., Raj, K. K., Chalasani, L. M., Annamraju, S. K., Js, B., & Talluri, V. R. (2015). Shape based virtual screening and molecular docking towards designing novel pancreatic lipase inhibitors. Bioinformation, 11(12), 535–542. https://doi.org/10.6026/97320630011535.
Weibel, E. K., Hadvary, P., Hochuli, E., Kupfer, E., & Lengsfeld, H. (1987). Lipstatin, an inhibitor of pancreatic lipase, produced by Streptomyces toxytricini. I. Producing organism, fermentation, isolation and biological activity. The Journal of Antibiotics, 40(8), 1081–1085. https://doi.org/10.7164/antibiotics.40.1081.
Yang, L., Zhu, J., Huang, H., Yang, Q., Cai, J., Wang, Q., Zhu, J., Shao, M., Xiao, J., Cao, J., Gu, X., Zhang, S., & Wang, Y. (2015). PFTK1 Promotes Gastric Cancer Progression by Regulating Proliferation, Migration and Invasion. PLOS ONE, 10(10), e0140451. https://doi.org/10.1371/journal.pone.0140451.
Zhang, H., Shen, C., Zhang, H. R., Chen, W. X., Luo, Q. Q., & Ding, L. (2021). Discovery of novel DGAT1 inhibitors by combination of machine learning methods, pharmacophore model and 3D-QSAR model. Molecular Diversity, 25(3), 1481–1495. https://doi.org/10.1007/s11030-021-10247-x.
Zhang, P., Ji, D. B., Han, H. B., Shi, Y. F., Du, C. Z., & Gu, J. (2014). Downregulation of miR-193a-5p correlates with lymph node metastasis and poor prognosis in colorectal cancer. World Journal of Gastroenterology, 20(34), 12241–12248. https://doi.org/10.3748/wjg.v20.i34.12241.
© CSIR-Central Institute of Medicinal and Aromatic Plants, (CSIR-CIMAP), Lucknow, India.
Jaiswal, S. V., Upadhyay, K. K., Modanwal, S., & Mishra, N. (2025). Synergistic integration of bioinformatics and Ayurveda in obesity and cancer management: Advancements, challenges and future directions. Journal of Medicinal and Aromatic Plant Sciences, 47(2), 58–70. https://doi.org/10.62029/jmaps.v47i2.jaiswal