Journal of Medicinal and Aromatic Plant Sciences

Volume: 46 Issue: 3

  • subscription
  • Original Research Article

Phytochemical analysis and evaluation of antimicrobial activity of leaf and stem extracts of Ecbolium viride Forssk.

Rudhra Santhi1*, Killivalavan Narayanan2, Venkatesan Adiyapatham3

1,3Phytomedicine Lab, 2Phytoremediation Lab, Department of Botany, Faculty of Science, Annamalai University, Annamalai Nagar – 608 002. Tamil Nadu, India.

*Corresponding author; Email: [email protected]

Year: 2024, Page: 115-122, Doi: https://doi.org/10.62029/jmaps.v46i3.santhi

Received: Oct. 12, 2024 Accepted: Nov. 27, 2024 Published: Feb. 10, 2025

Abstract

The rise and dissemination of drug-resistant microorganisms pose a serious threat to public health. There is an urgent need for an alternative therapeutic option, particularly those derived from traditionally used medicinal plants. The aim of this study was to evaluate the antimicrobial efficacy of leaf and stem extracts of Ecbolium viride Forssk., against human pathogenic bacterial and fungal strains. Additionally, this study sought to investigate the phytochemical composition of these extracts using spectral analysis techniques. Soxhlet extraction was conducted using solvents of varying polarities, including ethanol, methanol, acetone, and hexane. The methanolic extract underwent phytochemical analysis via FTIR and GC-MS. Antimicrobial activity was assessed by determining the MIC and MBC/MFC using the broth dilution method. The methanolic extracts of the leaf and stem of E. viride exhibited significant inhibition against all tested microorganisms. The highest inhibition was observed against Bacillus subtilis (22.3 ± 0.15 mm), followed by Salmonella typhi (19.9 ± 0.11 mm), and Aspergillus niger (21.8 ± 0.21 mm) at a concentration of 500 μg/mL.The methanolic leaf extract demonstrated strong antimicrobial activity with MIC values ranging from 15.625 to 125 μg/mL.FTIR and GC-MS analyses confirmed the presence of bioactive compounds with broad therapeutic potential. This study highlights E. viride as a promising source for the bioactive compounds responsible for its broad-spectrum antimicrobial activity, as evidenced by the diverse phytoconstituents identified through phytochemical analysis. This also underscores its potential applications in combating resistant microbial pathogens.

Keywords: Antimicrobial, Ecbolium viride, FTIR, GC-MS, Phytochemical.

References

Abdelmoumen, K., Alsibai, K.D., Rabier, S., Nacher, M., Wankpo, N.B., Gessain, A., Santa, F., Hermine, O., Marçais, A., Couppié, P., Droz, J.P., & Epelboin, L. (2023). Adult T-cell leukemia and lymphoma in French Guiana: a retrospective analysis with real-life data from 2009 to 2019. The Lancet Regional Health – Americas, 21, 100492.

Agidew, M.G. (2022). Phytochemical analysis of some selected traditional medicinal plants in Ethiopia. Bulletin of the National Research Centre, 46(1), 87.

Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D.G., Lightfoot, D.A. (2017). Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants (Basel), 6(4), 42.

Alvarez-Martinez, F.J., Barrajon-Catalán, E., Herranz-Lopez, M., & Micol, V. (2021). Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mechanisms of action. Phytomedicine, 90, 153626.

Ameya, G., Manilal, A., Sabu, K.R., Aragie, S. (2022). Bioassay-Guided Phytochemical Analyses and Antimicrobial Potentials of the Leaf Extract of Clematis hirsuta Perr. and Guill. Against Some Pathogenic Bacteria and Fungi. Infection and Drug Resistance, 10(15), 6577-6588.

Beyene, E. (2021). Phytochemical screening and antimicrobial activity of common mullein (Verbascum thapsus L.) root, leaf and fruit extracts. PhD diss., Haramaya University.

Cuevas-Cianca, S. I., Leal, A. C. L., Hernández, L. R., Arreola, E. S., & Bach, H. (2022). Antimicrobial, toxicity, and anti-inflammatory activities of Buddleja perfoliata Kunth. Phytomedicine Plus, 2(4), 100357.

Dai, Z., Liao, X., Wieland, L.S., Hu, J., Wang, Y., Kim, T.H., Robinson, N. (2022). Cochrane systematic reviews on traditional Chinese medicine: What matters–the quantity or quality of evidence. Phytomedicine, ٩٨, 153921.

Dias, E. D. J., Cantanhede Filho, A. J., Carneiro, F. J., da Rocha, C. Q., da Silva, L. C. N., Santos, J. C., ... & Santos, D. M. (2021). Antimicrobial activity of extracts from the Humiria balsamifera (Aubl). Plants, 10(7), 1479.

Dubey, D., Sahu, M.C., Rath, S., Paty, B.P., Debata, N.K. and Padhy, R.N. (2012). Antimicrobial activity of medicinal plants used by aborigines of Kalahandi, Orissa, India against multidrug resistant bacteria. Asian pacific journal of Tropical biomedicine, 2(2), S846-S854. https://doi.org/10.1016/S2221-1691(12)60322-0

Harborne, J.B. (1998). Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis. Chapman & Hall Pub, London, UK.

Hussain, A. I., Anwar, F., Sherazi, S. T. H., & Przybylski, R. (2008). Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food chemistry, 108(3), 986-995.

Hussain, A. I., Rathore, H. A., Sattar, M. Z., Chatha, S. A., Sarker, S. D., & Gilani, A. H. (2014). Citrullus colocynthis (L.) Schrad (bitter apple fruit): A review of its phytochemistry, pharmacology, traditional uses and nutritional potential. Journal of ethnopharmacology, 155(1), 54-66.

Johnson, O.O., & Ayoola,. GA. (2015). Antioxidant Activity Among Selected Medicinal Plants Combinations (Multi-Component Herbal Preparation). International Journal of Pharma Research and Health Sciences, 3(1), 526-532.

Kowalska-Krochmal, B., & Dudek-Wicher, R. (2021). The minimum inhibitory concentration of antibiotics: Methods, interpretation, clinical relevance. Pathogens, 10(2), 165.

Kumar, J., & Dhillon, H. 2015. TLC profiling and phytochemical screening of Podophyllum hexandrum Royle–an endangered medicinal plant. International Journal of Farm Sciences 5(1), 56-61.

Lone, A.S., Shahnawaz, M., Singh, N., Pervez, S., Ravindran, K.C. (2023). Metabolomic and antioxidant potential analyses of the rhizome and leaves of Podophyllum hexandrum Royle: A comparative account. Biocatalysis and Agricultural Biotechnology, (52), 102836.

Maduka, E.A., Yelwa, J.M., Ebunu, T.J.H.I., Muhammad, A.A. (2020). Physio-Chemical Studies of Isoberlinia doka Seed oil for Possible use as Edible Oil. International Journal of Advanced Research in Physical Science, 7(8), 11-19.

Magiorakos, A.P., Srinivasan, A., Carey, R.B., Carmeli, Y., Falagas, M.E., Giske, C. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection. 18(3), 268–281.

Mahdavi, S., Amiradalat, M., Babashpour, M., Sheikhlooei, H., & Miransari, M. (2020). The antioxidant, anticarcinogenic and antimicrobial properties of Verbascum thapsus L. Medicinal Chemistry, 16(7), 991-995.

Manilal, A., Sabu, K. R., Shewangizaw, M., Aklilu, A., Seid, M., Merdekios, B., & Tsegaye, B. (2020). In vitro antibacterial activity of medicinal plants against biofilm-forming methicillin-resistant Staphylococcus aureus: efficacy of Moringa stenopetala and Rosmarinus officinalis extracts. Heliyon, 6(1).

Mogana, R., Adhikari, A., Tzar, M. N., Ramliza, R., & Wiart, C. J. B. C. M. (2020). Antibacterial activities of the extracts, fractions and isolated compounds from Canarium patentinervium Miq. against bacterial clinical isolates. BMC complementary medicine and therapies, 20, 1-11.

Mulyaningsih, S., Youns, M., El-Readi, M. Z., Ashour, M. L., Nibret, E., Sporer, F., ... & Wink, M. (2010). Biological activity of the essential oil of Kadsura longipedunculata (Schisandraceae) and its major components. Journal of Pharmacy and Pharmacology, 62(8), 1037-1044.

Nadeem, H. A., Pervaiz, M., Ejaz, A., Saeed, Z., Imran, M., Khan, R. R. M., & Younas, U. (2024). Comparative phytochemical study of methanolic and ethanolic extracts of Thymus linearis and their antibacterial and antioxidant potential. Biomedical Chromatography, 38(3), e5808.

Nadeem, M. S., Munawar, T., Mukhtar, F., Ur Rahman, M. N., Riaz, M., & Iqbal, F. (2021). Enhancement in the photocatalytic and antimicrobial properties of ZnO nanoparticles by structural variations and energy bandgap tuning through Fe and Co co-doping. Ceramics International, 47(8), 11109-11121.

Nandiyanto, A. B. D., Oktiani, R., & Ragadhita, R. (2019). How to read and interpret FTIR spectroscope of organic material. Indonesian Journal of Science and Technology, 4(1), 97-118.

Nigussie, D., Davey, G., Tufa, T. B., Brewster, M., Legesse, B. A., Fekadu, A., & Makonnen, E. (2021). Antibacterial and antifungal activities of Ethiopian medicinal plants: a systematic review. Frontiers in pharmacology, 12, 633921.

Poirel, L., Kieffer, N., Fernandez-Garayzabal, J.F., Vela, A.I., Larpin, Y., Nordmann, P. (2017). MCR-2-mediated plasmid-borne polymyxin resistance most likely originates from Moraxella pluranimalium. Journal of Antimicrobial Chemotherapy, 72(10), 2947-9.

Pougoue, J. K., Fokunang, E. T., Beringyuy, E. B., & Fokunang, C. (2020). Evaluation of antioxidant properties of secondary metabolites in aqueous extracts of Ficus thonningii blume tested on wistar rats. Journal of Analytical & Pharmaceutical Research, 9(1), 27-35.

Shukla, B., Saxena, S., Usmani, S., & Kushwaha, P. (2021). Phytochemistry and pharmacological studies of Plumbago zeylanica L.: a medicinal plant review. Clinical Phytoscience, 7, 1-11.

Umar, M. I., Javeed, A., Ashraf, M., Riaz, A., Mukhtar, M. M., Afzal, S., & Altaf, R. (2013). Polarity-based solvents extraction of Opuntia dillenii and Zingiber officinale for in vitro antimicrobial activities. International Journal of Food Properties, 16(1), 114-124.

Valgas, C., Souza, S. M. D., Smânia, E. F., & Smânia Jr, A. (2007). Screening methods to determine antibacterial activity of natural products. Brazilian journal of microbiology, 38, 369-380.

Wani, A.A., Singh, P., Shah, M.A., Wani, I.A., Götz, A., Schott, M., Zacherl, C. (2013). Physico-chemical, thermal and rheological properties of starches isolated from newly released rice cultivars grown in Indian temperate climates. LWT-Food Science and Technology, 53(1), 176-183.

Wani, S.A., Ashfaq, M., Shah, K.W., Singh, D. (2012). Phytochemical screening of methanolic extracts of Podophyllum hexandrum Royle and Rheum emodi Wall. Journal of Current Chemical and Pharmaceutical Sciences 2, 125–128.

Cite this article

Santhi, R., Narayanan, K., & Adiyapatham, V. (2024). Phytochemical analysis and evaluation of antimicrobial activity of leaf and stem extracts of Ecbolium viride Forssk. Journal of Medicinal and Aromatic Plants, 46(3), 115-122. https://doi.org/10.62029/jmaps.v46i3.santhi

Views
171
Downloads
1
Citations