Volume: 42 Issue: 1
Microbial biofilms application in environmental monitoring, bioremediation and waste water treatment
Year: 2020, Page: 30-50, Doi: https://doi.org/10.62029/jmaps.v42i1.Rabbani
Received: Nov. 11, 2019 Accepted: June 4, 2020 Published: July 1, 2020
Increased contamination of the environment with toxic pollutants has paved the way for efficient strategies, which can be implemented for environment restoration. The major problem with conventional methods used for cleaning of pollutants is inefficiency and poor economics. Bioremediation is a growing technology having an advanced potential for cleaning pollutants. Biofilms formed by various microorganisms potentially provide a suitable microenvironment for efficient bioremediation processes. A biofilm is a microbially derived sessile community characterized by cells that are attached to an abiotic or living surface and embedded in a matrix of extracellular polymeric substances that they have produced. Biofilm communities provide a beneficial structure, possibility for nutrient, and genetic exchange to participating microorganisms as well as protection from the surrounding environment concerning for instance predation and chemical and shear stresses. Biofilms can also be utilized in other ways as biomarkers for monitoring of stream water quality from mine drainage. Biofilm systems are especially suitable for the treatment of recalcitrant compounds because of their high microbial biomass and ability to immobilize compounds. Bioremediation is also facilitated by enhanced gene transfer among biofilm organisms and by the increased bioavailability of pollutants for degradation as a result of bacterial chemotaxis. Many plant extracts contain phenol derivatives, terpenes, flavonoids, etc. which have ability to suppress the microbial cell attachment and biofilm growth. Strategies for improving bioremediation efficiency include genetic engineering to improve strains and chemotactic ability, the use of mixed population biofilms and optimization of physico–chemical conditions are discussed in this review.
Keywords: Bioremediation, Environmental Contaminants, Heavy Metals, Microbial Biofilm, Organic Pollutants, Waste water Treatment
Abidi SH, Ahmed K, Sherwani SK, Bibi N, Kazmi SU. 2014. Detection of Mycobacterium smegmatis biofilm and its control by natural agents. Int J Curr Microbiol App Sci 3: 801- 812.
Abou-Zeid DM, Müller RJ, Deckwer WD. 2004. Biodegradation of aliphatic homopolyesters and aliphatic” aromatic copolyesters by anaerobic microorganisms. Biomacromol 5: 1687-1697.
Abraham SVPI, Palani A, Ramaswamy BR, Shunmugiah KP, Arumugam VR. 2011. Antiquorum sensing and antibiofilm potential of Capparis spinosa. Archives Med Resch 42: 658-668.
Bandara HMHN, Yau JYY, Watt RM, Jin LJ, Samaranayake LP. 2010. Pseudomonas aeruginosa inhibits in-vitroCandida biofilm development. BMC microbial 10: 125.
Becker P, Hufnagle W, Peters G, Herrmann M. 2001. Detection of differential gene expression in biofilm-forming versus planktonic populations of Staphylococcus aureus using microrepresentational-difference analysis. Appl Environ Microbiol 67: 2958-2965.
Beech IB, Sunner JA, Hiraoka K. 2005. Microbesurface interactions in biofouling and biocorrosion processes. Int Microbiol 8: 157-168.
Beveridge TJ. 2001. Use of the gram stain in microbiology. Biotech Histochem 76: 111-118.
Blanck H, Admiraal W, Cleven RFMJ, Guasch H, Van den Hoop MAGT, Ivorra N, Tubbing GMJ. 2003. Variability in zinc tolerance, measured as incorporation of radio-labeled carbon dioxide and thymidine, in periphyton communities sampled from 15 European river stretches. Arch EnvCont Toxic 44: 0017-0029.
Bonnineau C, Guasch, H, Proia L., Ricart M, Geiszinger A, Romaní AM, Sabater S. 2010. Fluvial biofilms: a pertinent tool to assess âblockers toxicity. Aquat. Toxicol 96: 225-233.
Branda SS, Vik A, Friedman L, Kolter R. 2005. Biofilms: the matrix revisited. Trends in microbiol 13: 20-26.
Carneiro VA, Santos HS, Arruda FV, Bandeira PN, Albuquerque MR, Pereira MO, Henriques M, Cavada BS, Teixeira EH. 2011. Casbane diterpene as a promising natural antimicrobial agent against bioûlm-associated infections. Molecules 16: 190-201.
Chandki R, Banthia P, Banthia R. 2011. Biofilms: A microbial home. J Ind Soc Periodontol 15: 111.
Characklis WG, Cooksey KE. 1983. Biofilms and microbial fouling. In: Advances in Applied Microbiology 29: 93-138.
Chollet R, Ribault S. 2012. Use of ATP bioluminescence for rapid detection and enumeration of contaminants: the milliflex rapid microbiology detection and enumeration system. In: Bioluminescence-Recent Advances in Oceanic Measurements and Laboratory Applications. https://doi.org/ 10.5772/37055
Coenye T, Brackman G, Rigole P, De Witte E, Honraet K, Rossel B, Nelis, HJ. 2012. Eradication of Propionibacterium acnes biofilms by plant extracts and putative identification of icariin, resveratrol and salidroside as active compounds. Phytomed 19: 409-412.
Cortés ME, Bonilla JC, Sinisterra RD. 2011. Biofilm formation, control and novel strategies for eradication. Sci Against Microbial Pathog Commun Curr Res Technol Adv 2: 896-905.
Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott, HM. 1995. Microbial biofilms. Ann rev microbiol 49: 711-745.
Costerton JW, Stewart PS, Greenberg EP. 1999. Bacterial biofilms: a common cause of persistent infections. Sci 284: 1318-1322.
Costerton JW. 1995. Overview of microbial biofilms. J Industr microbial 15: 137-140.
Costerton JW. 1999. Introduction to biofilm. Int J antimicrob agents 11: 217-221.
Costley SC, Wallis FM. 2001. Bioremediation of heavy metals in a synthetic wastewater using a rotating biological contactor. Water Res 35: 3715-3723.
Cunningham SD, Berti WR. 1993. Remediation of contaminated soils with green plants: an overview. In: Vitro Cellular & Developmental Biology-Plant 29: 207-212.
Cydzik-Kwiatkowska A, Zieliñska M. 2016. Bacterial communities in full-scale wastewater treatment systems. World J Microbiol Biotech 32: 66.
Dar SA, Bhat RA. 2020. Aquatic pollution stress and role of biofilms as environment cleanup technology. In Fresh Water Pollution Dynamics and Remediation (pp. 293-318). Springer, Singapore.
De Kievit TR, Gillis R, Marx S, Brown C, Iglewski BH. 2001. Quorum-sensing genes in Pseudomonas aeruginosa biofilms: their role and expression patterns. Appl Environ Microbiol 67: 1865-1873.
De Philippis, Colica G, Micheletti E 2011. Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: molecular basis and practical applicability of the biosorption process. Appl Microbiol Biotechnol 92: 697.
Diels L Spaans PH, Van Roy S,Hooyberghs L, Ryngaert A, Wouters H, Pernfuss B. 2003. Heavy metals removal by sand filters inoculated with metal sorbing and precipitating bacteria. Hydrometallur 71: 235- 241.
Edwards SJ, Kjellerup BV. 2013. Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Appl microbiol biotechnol 97: 9909-9921.
Faraz N, Islam, Z Rehman R. 2012. Sehrish Antibiofilm forming activity of naturally occurring compound. Biomedica 28: 171- 175.
Fida TT, Breugelmans P, Lavigne R, Coronado E, Johnson DR, van der Meer JR, Springael, D. 2012. Exposure to solute stress affects genome-wide expression but not the polycyclic aromatic hydrocarbon-degrading activity of Sphingomonas sp. strain LH128 in biofilms. Appl Environ Microbiol 78: 8311- 8320.
Flemming HC, Wingender J. 2010. The biofilm matrix. Nat rev microbiol 8: 623-633.
Gaur N, Flora G, Yadav M, Tiwari A. 2014. A review with recent advancements on bioremediation -based abolition of heavy metals. Environmental Science: Process Impac 16: 180-193.
Gewert B, Plassmann MM, MacLeod M. 2015. Pathways for degradation of plastic polymers floating in the marine environment. Environmental Science: Process Impac 17: 1513-1521.
Gieg LM, Fowler SJ, Berdugo-Clavijo C. 2014. Syntrophic biodegradation of hydrocarbon contaminants. Curr opinion in biotechnol 27: 21-29.
Haritash AK, Kaushik CP. 2009. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. J hazard mat 169: 1-15.
Harjai K, Kumar R, Singh S. 2010. Garlic blocks quorum sensing and attenuates the virulence of Pseudomonas aeruginosa. FEMS Immunol Med Microbiol 58: 161-8.
Harrison JP, Sapp M, Schratzberger M, Osborn, AM. 2011. Interactions between microorganisms and marine microplastics: A call for research. Marine Technol Soc J 45: 12-20.
He X, Chang W, Pierce DL, Seib LO, Wagner J, Fuqua C. 2003. Quorum sensing in Rhizobium sp. strain NGR234 regulates conjugal transfer (tra) gene expression and influences growth rate. J Bacteriol 185: 809- 822.
Headley JV, Gandrass J, Kuballa J, Peru KM, Gong Y. 1998. Rates of sorption and partitioning of contaminants in river biofilm. Env sci technol 32: 3968-3973.
Horn H, Morgenroth E. 2006. Transport of oxygen, sodium chloride, and sodium nitrate in biofilms. Cheml Eng Sci 61: 1347-1356.
Jain K, Parida S, Mangwani N, Dash HR, Das S. 2013. Isolation and characterization of biofilmforming bacteria and associated extracellular polymeric substances from oral cavity. Annals microbiol 63: 1553-1562.
Jang A, Kim SM, Kim SY, Lee SG, Kim IS. 2001. Effect of heavy metals (Cu, Pb, and Ni) on the compositions of EPS in biofilms. Water Sci Technol 43: 41-48.
Jong T, Parry DL. 2003. Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale up flow anaerobic packed bed reactor runs. Water res 37: 3379- 3389.
Kamilova F, Kravchenko LV, Shaposhnikov AI, Azarova T, Makarova N, Lugtenberg B. 2006. Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Molecul Pl Microbe Interact 19: 250- 256.
Latasa C, Solano C, Penadés JR, Lasa I. 2006. Biofilm-associated proteins. Comptesrendusbiol 329: 849-857.
Lee JH, Cho HS, Joo SW, Regmi CS, Kim JA, Ryu SH, Yong RC, Cho MH, Lee J. 2013. Diverse plant extracts and trans resveratrol inhibit bioûlm formation and swarming of Escherichia coli O157:H7. Biofouling 29: 1189-203.
Lewandowski Z, Boltz JP. 2011. Biofilms in water and wastewater treatment. doi:10.1016/B978- 0-444-53199-5.00095-6.
Li YH, Tian X. 2012. Quorum sensing and bacterial social interactions in biofilms. Sensors 12: 2519-2538.
Liu PWG, Chang TC, Whang LM, Kao CH, Pan PT, Cheng SS. 2011. Bioremediation of petroleum hydrocarbon contaminated soil: Effects of strategies and microbial community shift. Int Biodeter Biodegrad 65: 1119-1127.
MacLeod FA, Guiot SR, Costerton JW. 1990. Layered structure of bacterial aggregates produced in an upflow anaerobic sludge bed and filter reactor. Appl Environ Microbiol 56: 1598-1607.
Matthysse AG. 2014. Attachment of Agrobacterium to plant surfaces. Front pl sci 5: 252.
MEl R, Essam T, Hashem A. 2012. Isolation and characterization of relevant algal and bacterial strains from Egyptian environment for potential use in photosynthetically aerated wastewater treatment. J Bioremed Biodeg 8: 2.
Mijakovic I, Deutscher J. 2015. Protein-tyrosine phosphorylation in Bacillus subtilis: a 10-year retrospective. Front microbial 6: 18.
Mulcahy H, Charron ML, Lewenza S. 2008. Extracellular DNA chelates cations and induces antimicrobial resistance in Escherichia Coli biofilms. PLoSPathog 4: 1213-8.
Mulcahy H, Charron-Mazenod L, Lewenza S. 2008. Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS pathog 4: 11.
Mulligan CN, Yong RN, Gibbs BF. 2001. An evaluation of technologies for the heavy metal remediation of dredged sediments. J hazard mat 85: 145-163.
Murali O, Mehar SK. 2014. Bioremediation of heavy metals using spirulina. Int J Geol Earth Environ Sci 4: 244-249.
Nebahat Bo, Leyla V, Berna D, Cigdem S, Abamuslum G, Murat G, Kemal HCB, Mine K. 2010. Effect of oregano essential oil on bioûlms formed by Staphylococci and Escherichia coli. Kafkas Univ Vet Fak Derg 16: 23-9.
Neu TR, Lawrence JR. 2014. Advanced techniques for in situ analysis of the biofilm matrix (structure, composition, dynamics) by means of laser scanning microscopy. In Microbial Biofilms (pp. 43-64). Humana Press, New York, NY.
Oliveira MM, Brugnera DF, Nasciment JD, Batista NN, Piccoli RH. 2012. Cinamon essential oil and cinamaldehyde in the control of bacterial bioûlm formed on stainless steel surfaces. Eur Food Res Technol 234: 821-32.
Oliveira R, Melo LF, Oliveira A, Salgueiro R. 1994. Polysaccharide production and biofilm formation by Pseudomonas fluorescens: Effects of pH and surface material 2: 41 – 46.
O’Toole GA. 2011. Microtiter dish biofilm formation assay. J Vis Exper 47: 2437.
Pal S, Sarkar U, Dasgupta D. 2010. Dynamic simulation of secondary treatment processes using trickling filters in a sewage treatment works in Howrah, west Bengal, India. Desalinat 253: 135-140.
Park H, Murthy S, Bott C, van Loosdrecht, MCM, Chandran K. 2014. Nationwide metagenome survey of anammox processes via highthroughput next generation sequencing (NGS): 2012-2013. Proc Water Enviro Fed 6: 2366-2371.
Pieper C, Risse D, Schmidt B, Braun B, Szewzyk U, Rotard W. 2010. Investigation of the microbial degradation of phenazone-type drugs and their metabolites by natural biofilms derived from river water using liquid chromatography/tandem mass spectrometry (LC-MS/MS). Water res 44: 4559-4569.
Potera C. 1996. Biofilms invade microbiology. Sci 273: 1795-1797.
Prakash B, Veeregowda BM, Krishnappa G. 2003. Biofilms: a survival strategy of bacteria. Curr sci 85:1299-1307.
Qurashi AW, Sabri AN. 2012. Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz J Microbiol 43: 1183-1191.
Ragusa SR, McNevin D, Qasem S, Mitchell C. 2004. Indicators of biofilm development and activity in constructed wetlands microcosms. Water res 38: 2865-2873.
Ravichandiran V, Shanmugam K, Anupama K, Thomas S, Princy A. 2012. Structure-based virtual screening for plant-derived SdiAselective ligands as potential antivirulent agents against uropathogenic Escherichia coli. European J med chem 48: 200-205.
Ricart M, Guasch H, Alberch M, Barceló D, Bonnineau C, Geiszinger A, Proia L. 2010. Triclosan persistence through wastewater treatment plants and its potential toxic effects on river biofilms. Aquatic Toxicol 100: 346- 353.
Safoura D, Morteza S, Mohsen B. 2010. Effect of cumin (Cuminum cyminum) seed essential oil bioûlm formation and plasmid integrity of Klebsiella pneumoniae. Pharmacogn Mag 6: 57-61.
Salehizadeh H, Shojaosadati SA. 2003. Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus. Water Res 37: 4231-4235.
Santamaría M, Díaz Marrero AR, Hernández J, Gutiérrez Navarro AM, Corzo J. 2003. Effect of thorium on the growth and capsule morphology of Bradyrhizobium. Environ microbiol 5: 916-924.
Santos VL, Linardi VR. 2004. Biodegradation of phenol by a filamentous fungus isolated from industrial effluents—identification and degradation potential. Process Biochem 39: 1001-1006.
Schembri MA, Christiansen G, Klemm P. 2001. FimH mediated auto aggregation of Escherichia coli. Molecul microbiol 41: 1419- 1430.
Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH. 1995. Phytoremediation of organic and nutrient contaminants. Environ sci technol 29: 318A-323A.
Sekiguchi T, Sato T, Enoki M, Kanehiro H, Uematsu K, Kato C. 2011. Isolation and characterization of biodegradable plastic degrading bacteria from deep-sea environments. JAMSTEC Report Res Dev 11: 33-41.
Seo JS, Keum YS, Li Q X. 2009. Bacterial degradation of aromatic compounds. Int J environ res pub health 6: 278-309.
Shukla SK, Rao TS. 2013. Dispersal of Bapmediated Staphylococcus aureus biofilm by proteinase K. J Antibiot 66: 55-60.
Simoes M, Pereira MO, Sillankorva S, Azeredo J, Vieira MJ. 2007. The effect of hydrodynamic conditions on the phenotype of Pseudomonas fluorescens biofilms. Biofouling 23: 249-258.
Singh BN, Singh HB, Singh A, Singh BR, Mishra A, Nautiyal CS. 2012. Lagerstroemia speciosa fruit extract modulates quorum sensingcontrolled virulence factor production and biofilm formation in Pseudomonas aeruginosa. Microbiology 158: 529-538.
Singh JS, Abhilash PC, Singh HB, Singh RP, Singh DP. 2011. Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene 480: 1-9.
SriuNaik S, Pydisetty Y. 2011. Biological Denitrification of wastewater in a FBBRd by immobilization of Pseudomonas stutzeri using poly propylene granules. Int J Biotech 3: 106-109.
Stoodley P, DeBeer D, Lewandowski Z. 1994. Liquid flow in biofilm systems. Appl Environ Microbiol 60: 2711-2716.
Stoodley P, Dodds I, Boyle JD, Lappin Scott HM. 1998. Influence of hydrodynamics and nutrients on biofilm structure. J appl microbial 85: 19S-28S.
Sutherland IW. 2001. Biofilm exopolysaccharides: a strong and sticky framework. Microbiol 147: 3-9.
Teitzel GM, Parsek MR. 2003. Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol 69: 2313-2320.
Templeton AS, Trainor TP, Traina SJ, Spormann AM, Brown GE. 2001. Pb (II) distributions at biofilm–metal oxide interfaces. Proceed Nat Acad Sci 98: 11897-11902.
Tetz GV, Artemenko NK, Tetz VV. 2009. Effect of DNase and antibiotics on biofilm cha racteristics. Antimicrob agents chemotherapy 53: 1204-1209.
Tlili A, Bérard A, Roulier JL, Volat B, Montuelle B. 2010. PO43" dependence of the tolerance of autotrophic and heterotrophic biofilm communities to copper and diuron. Aquatic Toxicol 98: 165-177.
Tomlinson AD, Fuqua C. 2009. Mechanisms and regulation of polar surface attachment in Agrobacterium tumefaciens. Curr opinion microbial 12: 708-714.
Trentin Dda S, Giordani RB, Zimmer KR, da Silva AG, da Silva MV, Correia MT, Baumvol IJ, Macedo AJ. 2011. Potential of medicinal plants from the Brazilian semi-arid region (Caatinga) against Staphylococcus epidermidis planktonic and bioûlm lifestyles. J Ethnopharmacol 137: 327-35.
Tsuruta T. 2004. Biosorption and recycling of gold using various microorganisms. The J General Appl Microbiol 50: 221-228.
Urbanek AK, Rymowicz W, Miroñczuk AM. 2018. Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Appl microbiol biotechnol 102: 7669-7678.
Vaishnav A, Kumari S, Jain S, Varma A, Tuteja N, Choudhary DK. 2016. PGPR mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside. J basic microbiol 56: 1274- 1288.
Van Hullebusch ED, Zandvoort MH, Lens PN. 2003. Metal immobilisation by biofilms: mechanisms and analytical tools. Rev in Env Sci Biotechnol 2: 9-33.
Van Sebille E, Wilcox C, Lebreton L, Maximenko N, Hardesty BD, Van Franeker JA, Law KL. 2015. A global inventory of small floating plastic debris. Environmental Research Letters 10: 124006. doi: 10. 124006. 10.1088/ 1748-9326/10/12/124006
Vilain S, Pretorius JM, Theron J, Brözel VS. 2009. DNA as an adhesin: Bacillus cereus requires extracellular DNA to form biofilms. Appl Environ Microbiol 75: 2861-2868.
Von Canstein H, Kelly S, Li Y, Wagner-Döbler I. 2002. Species diversity improves the efficiency of mercury-reducing biofilms under changing environmental conditions. Appl Environ Microbiol 68: 2829-2837.
Vu B, Chen M, Crawford RJ, Ivanova EP. 2009. Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14: 2535-2554.
Webb JS, McGinness S, Lappin-Scott HM. 1998. Metal removal by sulphate-reducing bacteria from natural and constructed wetlands. J Appl Microbiol 84: 240-248.
Wimpenny J, Manz W, Szewzyk U. 2000. Heterogeneity in biofilms. FEMS microbiol rev 24: 661-671.
Wong ACL. 1998. Biofilms in food processing environments. J dairy sci 81: 2765-2770.
Xiong Y, Liu Y. 2010. Biological control of microbial attachment: A promising alternative for mitigating membrane biofouling. Appl microbiol biotechnol 86: 825-837.
© CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015
Ahmad Rabbani, Priyam Bharti.2020. Microbial biofilms application in environmental monitoring, bioremediation and waste water treatment. J Med Aromat Plant Sci 42: 30-50.