Journal of Medicinal and Aromatic Plant Sciences

Volume: 42 Issue: 3

  • subscription
  • Review Article

Lead toxicity in plants and phytoremediation potential of aromatic plants for lead contaminated soils

HARSH PANT1*, VIJAYA LOBO1, RAJDEO SINGH1

*Corresponding author; E-mail: [email protected]
1Department of Botany, St. Xavier’s College (Autonomous), University of Mumbai, Mumbai, Maharashtra- 400001

Year: 2020, Page: 205-219, Doi: https://doi.org/10.62029/jmaps.v42i3.Pant

Received: July 1, 2020 Accepted: Aug. 1, 2020 Published: Dec. 31, 2020

Abstract

Lead contamination and subsequent degradation of the affected soil is a global environmental issue. Besides the natural weathering processes, the chief ways in which of lead contaminates the environment are anthropogenic. The plants which grow on such lead contaminated soils can uptake the heavy metal and translocate it to the various parts both in the intracellular and extracellular fashion. Lead toxicity can affect the overall plant health as it impacts basic physiological and metabolic processes such as germination, uptake of nutrients and minerals, photosynthesis, respiration, oxidative metabolism, mitosis etc. Plants in response to this toxicity can develop a certain degree of tolerance via passive and inducible mechanisms. These mechanisms have been exploited in the new era technology of phytoremediation which aims at a sustainable cleansing of lead contaminated soils by using plants. Aromatic plants because of their low risk of contamination in products consumption and a high demand over supply aspects are a suitable choice of plants that can be used for phytoremediation. This review addresses the aspects of lead contamination and its sources, the uptake of lead by plants, lead toxicity in plants, and the consequent tolerance developed as well as the potential and advantages of using aromatic plants for phytoremediation of soils which are contaminated with lead.

Keywords: Aromatic plants, Lead (Pb), Phytoremediation, Toxicity, Tolerance

References

Abdullah S, Sarem SM. 2010. The potential of Chrysanthemum and Pelargonium for phytoextraction of lead-contaminated soils. J Civ Eng 4: 409–416.

Ahmed A, Tajmir-Riahi HA.1993. Interaction of toxic metal ions Cadmium, Mercury and Pb with light harvesting proteins of chloroplast thylakoid membranes. An FTIR Spectroscopic study. J Inorg Biochem 50: 235-243.

Aliyu HG, Adamu HM. 2014. The potential of maize as a phytoremediation tool of heavy metals. Eur Sci J 10: 1857

Alqasoumi S. 2010. Carbon tetrachloride-induced hepatotoxicity: Protective effect of ‘Rocket’ Eruca sativa L. in rats. Am J Chin Med 38: 75-88.

Angelone M, Binni C. 1992. Trace elements concentration in soils and plants of western Europe. In Adriona DC, Biogeochemistry of trace elements. Lewis publishers, Boca Raton, London. pp 19-60.

Anindita M, Soumya C, Voronina A, Clemens W, Dharmendra G. 2020. Lead toxicity in plants: A review. 10.1007/978-3-030-21638-2_6. pp 99-116.

Assche F, Clijsters H. 1990. Effects of metals on enzyme activity in plants. Pl Cell Env 13: 195- 206. doi:10.1111/j.1365-3040. 1990.tb01304. x.

Baker AJM. 1991. Accumulator and excluder strategies in the plants in response to heavy metals. J Pl Nutr 3: 643-654.

Bazaz FA, Carlson RW, Rolfe GL. 1975. Inhibition of corn and soybean photosynthesis by lead. Physiol Pl 34: 326-329.

Branvall ML, Bindler R, Emteryd O, Renberg I. 2001. Four thousand years of atmospheric lead pollution in northern Europe: a summary from Swedish lake sediments. J Paleolimnol 25: 421-435.

Brennan M, Shelley M. 1999. A model of the uptake, translocation, and accumulation of lead (Pb) by maize for the purpose of phytoextraction. Ecol Engg 12: 271-297 doi: 10.1016/s0925- 8574(98)00073-1.

Brunet J, Varrault G, Zuily-Fodil Y, Repellin A. 2009. Accumulation of lead in the roots of grass pea (Lathyrus sativus L.) plants triggers systemic variation in gene expression in the shoots. Chemosphere 77: 1113-1120 doi: 10.1016/ j.chemosphere.2009.07.058.

Burzyñski M, Grabowski A. 1984. Influence of lead on N03 uptake and reduction in cucumber seedlings. Acta Societatis Botanicorum Poloniae 53: 77- 86 doi:10.5586/ asbp.1984.009.

Chaney RL, Ryan JA. 1994. Risk based standards for arsenic, cadmium and lead in urban soils. Dechema, Frankfurt, Germany.

Chiang PN, Wang MK, Chiu CY, Chou SY. 2006. Effects of cadmium amendments on lowmolecular-weight organic acid exudates in rhizosphere soils of tobacco and sunflower. Environ Toxicol 21: 479–488.

Clemens S. 2001. Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212: 475-486. doi:10.1007/s004250000458

Cunningham SD, Berti WR, Huang JW. 1995. Phytoremediation of contaminated soils. Trends Biotechnol 13: 393-397.

D Liu, Jiang W, ZhaoF, LuC.1994. Effects of lead on root growth, cell division, and nucleolus of Allium cepa. Environ Pollut 86: 1–4.

Doðru A. 2020. Lead toxicity and lead tolerance in plants. BSJ Agri 3: 329-339.

Elick MJ, Peak JD, Brady PV, Pesek JD.1999. Kinetics of Pb absorption/ desorption on goethite: residence time effect. Soil Sci 164: 28-39 http://dx.doi.org/10.1097/00010694- 199901000-00005.

Farid M, Ali S, Rizwan M, Ali Q, Abbas F, Bukhari S et al. 2017. Citric acid assisted phytoextraction of chromium by sunflower; morpho-physiological and biochemical alterations in plants. Ecotoxicol Env Safety 145: 90-102. doi: 10.1016/j.ecoenv. 2017.07.016.

Farzadfar S, Zarinkamar F, Modarres-Sanavy SAM, Hojati M. 2013. Exogenously applied calcium alleviates cadmium toxicity in Matricaria chamomilla L. plants. Environ Sci Pollut Res 20: 1413–1422.

Godbold DL, Kettner C.1991. Lead influences root growth and mineral nutrition of picea abies seedlings. J Pl Physiol 139: 95- 99. doi:10.1016/s0176-1617(11)80172-0.

Gupta D, Nicoloso F, Schetinger M, Rossato L, Pereira L, Castro G. et al. 2009. Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J Haz Mat 172: 479-484. doi: 10.1016/ j.jhazmat.2009.06.141.

Hadi F, Aziz T. 2021. A mini review on lead (pb) toxicity in plants. J Biol Life Sci 6: 2.

Harpaz-Saad S, Azoulay T, Arazi T, Ben-Yaakov E, Mett A, Shiboleth YM, Hörtensteiner S,Gidoni D, Gal-on A, Goldschmidt EE, Eyal Y. 2007. Chlorophyllase is a rate-limiting enzyme in chlorophyll catabolism and is post translationally regulated. The Pl Cell 19: 1007- 1022 doi: 10.1105/tpc.107.050633.

Hassan E. 2016. Comparative study on the biosorption of Pb (II), Cd (II) and Zn (II) using Lemon grass (Cymbopogon citratus): kinetics, isotherms and thermodynamics. Chem Int 2: 89–102.

Huang JW, Cunningham SD. 1996. Lead phytoextraction: Species variation in lead uptake and translocation. New Phytol 134: 75- 84. doi:10.1111/j.1469-8137. 1996.tb01147. x.

Ingemar R, Maja-Lena B, Richard B, Ove E. 2000. Atmospheric lead pollution history during four millennia (2000 BC to 2000 AD) in Sweden. A J Human Env 29: 150-156.

Inglezakis VJ, Zorpas AA, Karagianides A, Samaras P, Voukalli I. 2011. European Union Legislation on Sewage Sludge Management. In: Kungolos I, Tsiridis V. Cemepe and Secotox conference. 19-24 June. pp475- 480.

Iqbal J, Mushtaq S.1987. Effect of lead on germination, early seedling growth, soluble protein and acid phosphatase content in Zea mays. Pak J Sci Ind Res 30: 853-856.

Janhvi P, Verma RK, Singh S. 2019. Suitability of aromatic plants for phytoremediation of heavy metal contaminated areas: a review, Int J Phytoremed DOI: 10.1080/ 15226514.2018.1540546.

Jiang W, Liu D. 2010. Pb-induced cellular defense system in the root meristematic cells of Allium sativum L. BMC Pl Biol 10: 1-40. Doi: doi.org/ 10.1186/1471- 2229-10-40.

Jisha C, Bauddh K, Shukla S. 2017. Phytoremediation and bioenergy production efficiency of medicinal and aromatic plants. Phytoremed Pot Bioenergy Pl 287-304. doi: 10.1007/978-981-10-3084-0_11.

Kabata-Pendias A, Penidas H. 2001. Trace elements in soils and plants. Third ed. CRC Press, Boca Raton, FL, USA.

Kanawade S, Hamigi A, Gaikwad R. 2010. Ecological effect of pollution. Int JChem Engg App 332-335. doi: 10.7763/ijcea. 2010.v1.57

Kosobrukhov A, Knyazeva I, Mudrik V. 2004. Plantago major plant responses to increase content of soil: growth and photosynthesis. Pl growth reg 42: 145-151.

Krzestowska M, Lenartowski M, Samardakiewicz S, Bilski H, & WoŸny A. 2010. Lead deposited in the cell wall of Funaria hygrometrica protonemata is not stable- A remobilization can occur. Env Pollu 158: 325- 338. doi: 10.1016/j.envpol.2009.06.035.

Kumar PBAN, Dushenkov V, Motto H, Raskin I. 1995. Phytoextraction: the use of plants to remove heavy metals from soils. Env Sci Technol 29: 1232-1238. doi:10.1021/ es00005a014.

Lal K, Yadav RK, Kaur R, Bundela DS, Khan MI, Chaudhary M, Meena RL, Dar SR, Singh G. 2013. Productivity, essential oil yield, and heavy metal accumulation in lemon grass (Cymbopogon flexuosus) under varied wastewater–groundwater irrigation regimes. Ind Crops Prod 45: 270–278

Landmeyer JE. 2011. Introduction to phytoremediation of contaminated groundwater: Historical foundation, hydrologic control, and contaminant remediation. Springer Science and Business Media.

Lane SD, Martin ES. 1977. A Histochemical Investigation of Lead Uptake in Raphanus Sativus. New Phytol 79: 281-286 doi:10.1111/ j.1469- 8137. 1977.tb02206. x.

Liu D, Jiang W, Zhao F, Lu C. 1994. Effects of lead on root growth, cell division, and nucleolus of Allium cepa. Environ Pollut 86: 1–4 doi: https:/ /doi.org/10.1016/0269-7491(94)90002-7.

Liu D, Li T, Jin X, Yang X, Islam E, Mahmood Q. 2008. Lead induced changes in the growth and antioxidant metabolism of the lead accumulating and non-accumulating ecotypes of Sedum alfredii. J of Integrat Pl Biol 50: 129-140. doi: 10.1111/j.1744- 7909.2007. 00608.x.

Liu T, Liu S, Guan H, Ma L, Chen Z, Gu H, Qu LJ. 2009. Transcriptional profiling of Arabidopsis seedlings in response to heavy metal lead (Pb). Env Exp Bot 67: 377- 386. doi: 10.1016/ j.envexpbot.2009.03.016.

Maestri E, Marmiroli M, Visioli G, Marmiroli N. 2010. Metal tolerance and hyperaccumulation: Costs and trade-offs between traits and environment. Env Exp Bot 68: 1- 13. doi: 10.1016/j.envexpbot.2009.10.011.

Matecka A, Piechalak A, Morkunas I.2008. Accumulation of lead in root cells of Pisum sativum. Acta Physiol Pl 30: 629–637. https:/ /doi.org/10.1007/s11738-008-0159-1.x.

Marschner P, Godbold DL, Jentschke G. 1996. Dynamics of lead accumulation in mycorrhizal and non-mycorrhizal Norway spruce (Picea abies (L.) Karst.). Pl Soil 178: 239-245. doi:10.1007/bf00011589.

Martin T, Ruby M. 2004. Review ofin situ remediation technologies for lead, zinc, and cadmium in soil. Remed J 14: 35-53. doi: 10.1002/ rem.20011.

Meagher RB. 2000. Phytoremediation of toxic elemental and organic pollutants. Curr Opin Pl Biol 3: 153–162.

Meyers DER, Auchterlonie GJ, Webb RI, Wood B. 2008. Uptake and localization of lead in the root system of Brassica juncea. Environmental Pollution 153: 323-332. doi: 10.1016/j.envpol.2007.08.029.

Mishra A, Dash P, Murthy P, Siddique H, Kushwaha P. 2012. A classical review on rajika (Brassica juncea. Research and reviews: J Bot Sci 1: 18-23.

Mitra A, SoumyaC, Voronina A, Walther C, DharmendraG. 2020. Lead Toxicity in Plants: A review. 10.1007/978-3-030-21638-2_6. pp 99-116.

Ouyang SW, Zhao KJ, Feng LX, Chye ML, Ram S. 2002. [BjCHI1 from Brassica juncea displays both chitinase and agglutination activity. Sheng Wu Gong Cheng Xue Bao 18: 572-7.

Paivoke AEA. 2002. Soil lead alters phytase activity and mineral nutrient balance of Pisum sativum. Env Exper Bot 48: 61-73. doi: http:/ /dx.doi.org/10.1016/S0098-8472(02)00011-4.

Pandey J, Verma R, Singh S. 2019. Suitability of aromatic plants for phytoremediation of heavy metal contaminated areas: a review. Int J Phytoremed 21: 405-418. doi: 10.1080/ 15226514.2018.1540546.

Patra M, Bhowmik N, Bandopadhyay B, Sharma A. 2004. Comparision of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ Exper Bot 52: 199– 223.10.1016/j.envexpbot.2004.02.009.

Pinho S, Ladeiro B. 2012. Phytotoxicity by Lead as Heavy Metal Focus on Oxidative Stress. J Bot 1-10. doi: 10.1155/2012/369572.

Pompeani DP, Abbott MB, Steinman BA, Bain DJ. 2013. Lake sediments record prehistoric lead pollution related to early copper production in North America. Environ Sci Technol 47: 5545-52.

Prasad A, Singh AK, Chand S, Chanotiya CS, Patra DD. 2010. Effect of chromium and lead on yield, chemical composition of essential oil, and accumulation of heavy metals of mint species. Commun Soil Sci Plant Anal 41: 2170–2186. doi:10.1080/00103624.2010. 504798.

Rashid A, Camm EL, Ekramoddoullah AKM. 1994. Molecular mechanism of action of Pb2+and Zn2+ on water oxidizing complex of photosystem II. FEBS Lett 350: 296-298. doi:10.1016/0014-5793(94)00789-6.

Reeves RD, Brooks RR. 1983. European species of Thlaspi L. (Cruciferae) as indicators of nickel and zinc. J Geochem Explor 18: 275- 283.

Romanowska E, Igamberdiev AU, Parys E, Gardestrom P. 2002. Stimulation of respiration by Pb2+ in detached leaves and mitochondria of C3 and C4 plants. Physiol Planta 116: 148-154 doi:10.1034/j.1399- 3054.2002.1160203.x.

Romanowska E, Pokorska B, Siedlecka M. 2005. The effects of oligomycin on content of adenylates in mesophyll protoplasts, chloroplasts and mitochondria from Pb2+ treated pea and barley leaves. Acta Physiol Planta 27: 29- 36 doi:10.1007/s11738-005- 0033-3.

Romanowska E, Wróblewska B, Drozak A, Siedlecka M. 2006. High light intensity protects photosynthetic apparatus of pea plants against exposure to lead. Pl Physiol Biochem 44: 387-394. doi: 10.1016/j.plaphy. 2006.06.003.

Rotkittikhun P, Kruatrachue M, Pokethitiyook P, Baker AJ. 2010. Tolerance and accumulation of lead in Vetiveria zizanioides and its effect on oil production. J Environ Biol 31: 329.

Ruciñska-Sobkowiak R, Nowaczyk G, Krzestowska M, Rabêda I, Jurga S. 2013. Water status and water diffusion transport in lupine roots exposed to lead. Environ Exp Bot 87: 100- 109. doi: 10.1016/j.envexpbot. 2012.09.012.

Rudakova EV, Karakis KD, Sidorshina ET. 1988. The role of plant cell walls in the uptake and accumulation of metal ions. Fiziol Biochim Kult Rast 20: 3-12.

Ruskin I, Kumar NPBA, Dushenkov S, Salt DE. 1994. Bioconcentration of heavy metals by plants. Curr Opin Biotech 5: 285-290.

Sa RA, Alberton O, Gazim ZC, Laverde Jr A, Caetano J, Amorin AC, Dragunski DC. 2015. Phytoaccumulation and effect of lead on yield and chemical composition of Mentha crispa essential oil. Desalin Water Treat 53: 3007– 3017. doi:10.1080/19443994. 2013.874716.

Scora RW, Chang AC. 1997. Essential oil quality and heavy metal concentrations of peppermint grown on a municipal sludgeamended soil. J Environ Qual 26: 975–979.

Sengar RS, Gautam M, Garg SK, Sengar K, Chaudhary R. 2009. Lead stress effects on physiochemical activities of higher plants. Rev Environ Toxicol 196: 1-121.

Seregin IV, Ivanov VB, Physiological aspects of Cadmium and lead toxic effects on higher plants. Russ. J Pl Physiol 48: 606-640.

Sethy SK, Ghosh S. 2013. Effects of heavy metals on seed germination. J Nat Sci Biol Med 4: 272-275.

Sharma P, Dubey R. 2005. Lead toxicity in plants. Braz J Pl Physiol 17: 35-52. doi: 10.1590/ s1677-04202005000100004.

Shrirangasami S, Rakesh S, Murugaragavan R, Ramesh PT, Varadharaj S, Elangovan R, Saravana Kumar S. 2020. Phytoremediation of contaminated soils-A review. pp 3269- 3283. Doi:10.20546/ijcmas.2020.911.392.

Silverberg BA. 1975. Ultrastructural localization of lead in Stigeoclonium tenue (Chlorophyceae, Ulotrichales) as demonstrated by cytochemical and X-ray microanalysis. Phycologia 14: 265–274. doi:10.2216/i0031- 8884-14-4-265.1.

Singh HP, Gurpreet K,Daizy RB,Ravinder KK. 2011. Lead (Pb)-Inhibited radicle emergence in brassica campestris involves alterations in starch-metabolizing enzymes. Biol Trace Elem Res 144:1295–1301. Doi:https://doi.org/ 10.1007/s12011-011-9129-3.

Singh M, Guleria N, Rao EVP, Goswami P. 2014. Efficient C sequestration and benefits of medicinal vetiver cropping in tropical regions. Agron Sustain Dev 34: 603–607.

Sobh M, Moussawi MA, Rammal W, Hijazi A, Rammal H, Reda M, Hamieh T. 2014. Removal of lead (II) ions from waste water by using Lebanese Cymbopogon citratus (lemon grass) stem as adsorbent. Am J Phyto med Clin Ther 2: 1070–1080.

Stefanov K, Seizova, K, Popova I, Petkov VL, Kimenov G, Popov S. (1995). Effects of lead ions on the phospholipid composition in leaves of Zea mays and Phaseolus vulgaris. J of Pl Physiol 147: 243-246 doi: http:// dx.doi.org/10.1016/S0176-1617(11)81511-7.

Sturges WT, Barrie LA. 1989. Stable lead isotope ratios in arctic aerosols: evidence for the origin of arctic air pollution. Arctic Air Chem 23: 2513-2519.

Sungmin H, Jean-Pierre C, Clair CP, Claude FB. 1994. Greenland ice evidence of hemispheric lead pollution two millennia ago by Greek and Roman civilizations. Sci 265: 1841-1843.

Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. 2012. Heavy metals toxicity and environment. Mol. Clin & Environ. Toxicol 101: 133-164.

Vassil, AD, Kapulnik, Y, Raskin, I, Salt DE. 1998. The Role of EDTA in Lead Transport and Accumulation by Indian Mustard. Pl Physiol 117: 447-453. doi:10.1104/pp.117.2.447.

Verma S, Dubey R. 2003. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Pl Sci 164: 645-655 doi: 10.1016/s0168- 9452(03)00022-0.

Verma SK, Singh K, Gupta AK, Pandey VC, Trivedi P, Verma RK, Patra DD. 2014. Aromatic grasses for phyto management of coal fly ash hazards. Ecol Eng 73: 425–428.

Violina A.2013. Potential of some medicinal and aromatic plants for phytoremediation of contaminated with heavy metals soils. Proceedings of the XV Balkan Mineral Processing Congress, Sozopol, Bulgaria. pp 1045-1048.

Weryszko-Chmielewska E, Chwil, M. 2005. Leadinduced histological and ultrastructural changes in the leaves of soybean (Glycine max (L.) Merr.). Soil Sci Pl Nutri 51: 203-212. doi: 10.1111/j.1747-0765. 2005.tb00024.

Wierzbicka M. 1994. Resumption of mitotic activity in Allium cepa L. root tips during treatment with lead salts. Environ Exper Bot 34: 173– 180.doi:10.1016/0098-8472(94)90036-1

Wierzbicka MH, Przedpetska E, Ruzik R, Ouerdane L, Polec-Pawlak K, Jarosz M, Szakiel A. 2007. Comparison of the toxicity and distribution of cadmium and lead in plant cells. Protoplasma 231: 99- 111. doi:10.1007/s00709-006-0227-6.

Wuana R, Okieimen F. 2011. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 1-20. doi: 10.5402/ 2011/402647.

Yadav SK. 2010. Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. SA J Bot 76: 167-179. doi: 10.1016/j.sajb.2009.10.007.

Yang B, Shu WS, Ye ZH, Lan CY, Wong MH. 2003. Growth and metal accumulation in vetiver and two Sesbania species on lead/zinc mine tailings. Chemosphere 52: 1593–1600.

Yang X, Li T, Yang J, He Z, Lu, L, Meng, F. 2006. Zinc compartmentation in root, transport into xylem, and absorption into leaf cells in the hyperaccumulating species of Sedum alfredii Hance. Planta 224: 185–195 doi: https:// doi.org/10.1007/s00425-005-0194-8.

Yao Z, Li J, Xie H, Yu C. 2012. Review on remediation technologies of soil contaminated by heavy metals. Procedia Environ Sci 16: 722-729 doi: 10.1016/j.proenv.2012.10.099.

Ye ZH, Baker AJM, Wong MH, Willis AJ, Zinc, Lead and Cadmium tolerance, uptake and accumulation in populations of Typha latifolia L. New Phytol 136: 469-480.

Zheljazkov VD, Astatkie T. 2011. Effect of plant species and benomyl on lead concentration and removal from lead-enriched soil. Hort Sci 46: 1604–1607.

Zheljazkov VD, Nielsen NE. 1996a. Effect of heavy metals on peppermint and corn mint. Pl Soil 178: 59–66.

Zheljazkov VD, Nielsen NE. 1996b. Studies on the effect of heavy metals (Cd, Pb, Cu, Mn, Zn and Fe) upon the growth, productivity and quality of lavender (Lavandula angustifolia Mill.) production. J Essent Oil Res 8: 259– 274.

Zheljazkov VD, Warman PR. 2004. Phyto availability and fractionation of copper, manganese, and zinc in soil following application of two composts to four crops. Environ Pollut 131: 187–195.

Zulfiqar U, Farooq M, Hussain S, Maqsood M, Hussain M, Ishfaq M. 2019. Lead toxicity in plants: Impacts and remediation. J Env Mgmt 250: 109557. doi: 10.1016/j.jenvman. 2019.109557.
 

Cite this article

Harsh Pant, Vijaya Lobo, Rajdeo Singh. 2020. Lead toxicity in plants and phytoremediation potential of aromatic plants for lead contaminated soils. J Med Aromat Plant Sci 42: 205-219.
 

Views
296
Downloads
1
Citations