Journal of Medicinal and Aromatic Plant Sciences

Volume: 47 Issue: 2

  • subscription
  • Original Research Article

Integrated phytochemical and bioefficacy assessment of Mussaenda erythrophylla leaf extracts: Antioxidant, antibacterial and larvicidal potentials

Debasish Dikshit1*, Baishali Swain2, Arpita Priyadarshinee Behuria1, Adiyapatham Venkatesan1

1Annamalai University, Chidambaram, Tamil Nadu-608002, India.
2ICAR-CRRI, Bidyadharpur, Cuttack-753006, Odisha, India.
*Corresponding author; Email: [email protected]

Year: 2025, Page: 71-82, Doi: https://doi.org/10.62029/jmaps.v47i2.dikshit

Received: Feb. 24, 2025 Accepted: Sept. 18, 2025 Published: Nov. 30, 2025

Abstract

Herbal medicines have long been valued for their therapeutic potential in traditional healthcare systems. This study explores the phytochemical composition and evaluates the antioxidant, antibacterial, and larvicidal activities of Mussaenda erythrophylla leaf extracts using different solvents: methanol (ME), ethyl acetate (EAE), chloroform (CE), and aqueous (AE). Preliminary phytochemical screening confirmed the presence of flavonoids, glycosides, saponins, tannins, carbohydrates, and triterpenoids, with higher concentrations of flavonoids and triterpenoids in the methanolic extract. Antioxidant activities were assessed using FRAP, DPPH, and nitric oxide assays, with the methanolic extract showing the highest activity (FRAP > DPPH > NO). Antibacterial properties were tested by agar well diffusion against Staphylococcus aureus, Enterococcus faecalis, Klebsiella pneumoniae and Salmonella typhi. Linezolid and ampicillin served as positive controls for gram-positive and gram-negative strains, respectively, while DMSO was used as a negative control. Larvicidal efficacy was evaluated against the first to fourth instar larvae, where the methanolic extract demonstrated the strongest activity, achieving 91.52 ± 0.79% mortality at 500 µg mL-1. The overall bioactivity trend across extracts was ME > EAE > AE > CE. These findings suggest that methanol is the most effective solvent for extracting bioactive compounds from M. erythrophylla, supporting its potential as a natural source for developing antioxidant, antibacterial, and larvicidal agents.

Keywords: Antibacterial activity, Larvicidal activity, LC₅₀, Mussaenda erythrophylla, Radical scavenging.

References

Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 265-267.

Abe, F. R., Machado, A. A., Coleone, A. C., da Cruz, C., & Machado-Neto, J. G. (2019). Toxicity of diflubenzuron and temephos on freshwater fishes: ecotoxicological assays with Oreochromis niloticus and Hyphessobrycon eques. Water, Air, & Soil Pollution, 230(3), 77. https://doi.org/10.1007/s11270-019-4128-7

Afonso, S., Nogueira, J., Cavaleiro, C., Ferreira, F. M. L., Moreira-Santos, M. (2024). Lethal Toxicity of Thymus mastichina and Helichrysum italicum Essential Oils to Non-Target Aquatic Organisms: Tools to Screen Environmental Effects?. Water, 16 (1), 137. https://doi.org/10.3390/w16010137

Ashok Kumar, B. S., & Disha, N. S. (2025). A scoping review of herbal and allopathic remedies: Insights into liver damage, diagnostic methods, and hepatoprotective strategies. Annals of Phytomedicine, 14(1): 78-88

Behera, S. K. (2018). Phytochemical screening and antioxidant properties of methanolic extract of root of Asparagus racemosus Linn. International Journal of Food Properties, 21(1), 2681-2688. https://doi.org/10.1080/10942912.2018.1560310

Benelli, G., Lo Iacono, A., Canale, A., & Mehlhorn, H. (2016). Mosquito vectors and the spread of cancer: an overlooked connection. Parasitology Research, 115(6), 2131-2137.

Boonsoong, B., & Bullangpoti, V. (2009). Toxicity of neem-based insecticides on non-target aquatic invertebrates: a mini review. Bio Pesticides International, 5(2), 100-105.

Borges, J. C., Haddi, K., Valbon, W. R., Costa, L. T., Ascêncio, S. D., Santos, G. R., & Aguiar, R. W. (2022). Methanolic extracts of Chiococca alba in Aedes aegypti biorational management: Larvicidal and repellent potential, and selectivity against non-target organisms. Plants, 11(23), 3298.

Bouzeko, I. L. T., Dongmo, F. L. M., Ndontsa, B. L., Ngansop, C. A. N., Keumoe, R., Bitchagno, G. T. M. & Tene, M. (2021). Chemical constituents of Mussaenda erythrophylla Schumach. & Thonn. (Rubiaceae) and their chemophenetic significance. Biochemical Systematics and Ecology, 98, 104329. https://doi.org/10.1016/j.bse.2021.104329

Cragg, G. M., & Newman, D. J. (2013). Natural products: a continuing source of novel drug leads. Biochimica et Biophysica Acta (BBA)-General Subjects, 1830(6), 3670-3695. https://doi.org/10.1016/j.bbagen.2013.02.008

Devi, U. & Bora, D. (2017). Growth inhibitory effect of phenolic extracts of Ziziphus jujuba Mill. in dengue vector Aedes aegypti (L) in parent and F1 generation. Asian Pacific Journal of Tropical Medicine, 10(8): 787-791. https://doi.org/10.1016/j.apjtm.2017.08.003

Dey, P., Kundu, A., Kumar, A., Gupta, M., Lee, B. M., Bhakta, T., & Kim, H. S. (2020). Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids). Recent Advances in Natural Products Analysis, 505-567. https://doi.org/10.1016/B978-0-12-816455-6.00015-9

Eswaraiah, M. C., & Elumalai, A. (2011). Isolation of phytoconstituents from the stems of Mussaenda erythrophylla. Der Pharmacia Sinica, 2, 132-142.

Eswaraiah, M. C., & Satyanarayana, T. (2010). In vitro antioxidant and free radical scavenging activity of stem of Mussaenda erythrophylla. International Journal of Pharmaceutical Sciences and Research, 1(9), 20-26.

Eswaraiah, M. C., Elumalai, A., & Manasa, N. (2012). Pharmacognostical evaluation of Mussaenda erythrophylla Linn leaves. Research Journal of Pharmacognosy and Phytochemistry, 4(4), 197-200.

Faleel, N., Kananke, T., & Perera, N. (2024). Development of Mussaenda frondosa sepal infused functional tea with enhanced antioxidant and alpha-amylase inhibitory activities. Discover Food, 4(1), 138. https://doi.org/10.1007/s44187-024-00207-3

Govindarajan, M. (2009). Bioefficacy of Cassia fistula Linn. (Leguminosae) leaf extract against chikungunya vector, Aedes aegypti (Diptera: Culicidae). European Review for Medical & Pharmacological Sciences, 13(2).

Govindarajan, M., Ramya, A., & Sivakumar, R. (2014). Mosquito larvicidal properties of Mirabilis jalapa (Nyctaginaceae) against Anopheles stephensi, Aedes aegypti & Culex quinquefasciatus (Diptera: Culicidae). Indian Journal of Medical Research, 140(3), 438-440.

Gusmão, D. S., Páscoa, V., Mathias, L., Vieira, I. J. C., Braz-Filho, R., & Lemos, F. J. A. (2002). Derris (Lonchocarpus) urucu (Leguminosae) extract modifies the peritrophic matrix structure of Aedes aegypti (Diptera: Culicidae). Memórias do Instituto Oswaldo Cruz, 97, 371-375. https://doi.org/10.1590/S0074-02762002000300017

Inocente, E. A., Shaya, M., Acosta, N., Rakotondraibe, L. H., & Piermarini, P. M. (2018). A natural agonist of mosquito TRPA1 from the medicinal plant Cinnamosma fragrans that is toxic, antifeedant, and repellent to the yellow fever mosquito Aedes aegypti. PLoS Neglected Tropical Diseases, 12(2), e0006265. https://doi.org/10.1371/journal.pntd.0006265

Isman, M. B. (2015). A Renaissance for Botanical Insecticides? Pest Management Science, 71, 1587–1590.

Konwar, D., Singh, M. K. & Bordoloi, R. (2025). Evaluating the Insecticidal Potential of Selected Plant Extracts Found in Upper Brahmaputra Valley against the Dengue Vector Aedes aegypti Linn. (Dipter: Culicidae). Agricultural Science Digest, 1-8. https://doi.org/10.18805/ag.D-6265

Kovendan, K., Murugan, K., Shanthakumar, S. P., Vincent, S., & Hwang, J. S. (2012). Larvicidal activity of Morinda citrifolia L. (Noni) (Family: Rubiaceae) leaf extract against Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti. Parasitology research, 111(4), 1481-1490. https://doi.org/10.1007/s00436-012-2984-9

Kowalska-Krochmal, B., & Dudek-Wicher, R. (2021). The minimum inhibitory concentration of antibiotics: Methods, interpretation, clinical relevance. Pathogens, 10(2), 165. https://doi.org/10.3390/pathogens10020165

Krishna, S. M., Bhavya, T. N., Kumar, R. A., & Eswaraiah, C. M. (2015). Phytochemical evaluation of Mussaenda erythrophylla, Elaeocarpus ganitrus, Cassia sophera. Indian Journal of Research in Pharmacy and Biotechnology, 3(6), 464.

Lalremruati, M., Lalmuansangi, C., Zosangzuali, M., Tochhawng, L., Trivedi, A. K., Kumar, N. S., & Siama, Z. (2022). Mussaenda macrophylla Wall. exhibit anticancer activity against Dalton’s lymphoma ascites (DLA) bearing mice via alterations of redox-homeostasis and apoptotic genes expression. The Journal of Basic and Applied Zoology, 83(1), 6. https://doi.org/10.1186/s41936-022-00268-9

Lambert, O., & Sophia, A. A. (2021). Evaluation of the Larvicidal Activities of the Crude Root Extracts of Ixora Coccinea L (Rubiaceae) on Aedes Aegypti Larvae. Asian Journal of Pharmaceutical Research and Development, 9(4), 11-15. https://doi.org/10.22270/ajprd.v9i4.1019

Madhuri, K., Kadali, S. P., Kalukuri, B. P., Manthuri, A., Boggula, N., Bakshi, V., & Manda, R. M. (2002). Assessment of Antioxidant Activity of Leaf Extract of Mussaenda erythrophylla. Chemistry Research Journal, 7(5), 1-7.

Mahanta, S., Sarma, R. & Khanikar, B. (2019). The essential oil of Lippia alba Mill (Lamiales: Verbenaceae) as mosquitocidal and repellent agent against Culex quinquefasciatus Say (Diptera: Culicidae) and Aedes aegypti Linn (Diptera: Culicidae). The Journal of Basic and Applied Zoology, 80(64), 1-7. https://doi.org/10.1186/s41936-019-0132-0

Manilal, A., Sabu, K. R., Shewangizaw, M., Aklilu, A., Seid, M., Merdekios, B., & Tsegaye, B. (2020). In vitro antibacterial activity of medicinal plants against biofilm-forming methicillin-resistant Staphylococcus aureus: efficacy of Moringa stenopetala and Rosmarinus officinalis extracts. Heliyon, 6(1), e03303. https://doi.org/10.1016/j.heliyon.2020.e03303

Marimuthu, S., Rahuman, A. A., Kirthi, A. V., Santhoshkumar, T., Jayaseelan, C., & Rajakumar, G. (2013). Eco-friendly microbial route to synthesize cobalt nanoparticles using Bacillus thuringiensis against malaria and dengue vectors. Parasitology Research, 112, 4105-4112. https://doi.org/10.1007/s00436-013-3601-2

Naskar, S., Islam, A., Mazumder, U. K., Saha, P., Haldar, P. K., & Gupta, M. (2010). In vitro and in vivo antioxidant potential of hydromethanolic extract of Phoenix dactylifera fruits. Journal of Scientific Research, 2(1), 144-157. https://doi.org/10.3329/jsr.v2i1.2643

Nugraha, A. S., & Keller, P. A. (2011). Revealing indigenous Indonesian traditional medicine: anti-infective agents. Natural Product Communications, 6(12), 1953-1964. https://doi.org/10.1177/1934578X1100601240

Ochieng, C. O., Midiwo, J. O., & Owuor, P. O. (2010). Anti-plasmodial and larvicidal effects of surface exudates of Gardenia ternifolia aerial parts. Research Journal of Pharmacology, 4(2), 45-50. https://doi.org/10.3923/rjpharm.2010.45.50

Paramanik, M., Chatterjee, S. K., & Chandra, G. (2023). Larvicidal efficacy of Vangueria spinosa Roxb.(Rubiaceae) leaf extracts against filarial vector Culex quinquefasciatus. International Journal of Mosquito Research, 10(1), 01-06. https://doi.org/10.22271/23487941.2023.v10.i1a.655

Pavela, R. (2016). History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects-A review. Plant Protection Science, 52, 229-241. https://doi.org/10.17221/31/2016-PPS

Pavela, R., Maggi, F., Innarelli, R., Benelli, G. (2019). Plant extracts for developing mosquito larvicides: From laboratory to field, with insights on the modes of action. Acta Tropica, 193, 236-271. https://doi.org/10.1016/j.actatropica.2019.01.019

Porusia, M., & Septiyana, D. (2021). Larvicidal activity of Melaleuca leucadendra leaves extract against Aedes aegypti. Caspian Journal of Environmental Sciences, 19(2), 277-285.

Pradeepa, M., Kalidas, V., & Geetha, N. (2016). Qualitative and quantitative phytochemical analysis and bactericidal activity of Pelargonium graveolens L’Her. International Journal of Applied Pharmaceutics, 8(3), 7-11.

Puthur, S., Anoopkumar, A. N., Rebello, S., & Aneesh, E. M. (2018). Hypericum japonicum: A double-headed sword to combat vector control and cancer. Applied Biochemistry and Biotechnology, 186(1), 1-11. https://doi.org/10.1007/s12010-018-2713-7

Rajasekaran, A., and Duraikannan, G. (2012). Larvicidal activity of plant extracts on Aedes aegypti L. Asian Pacific Journal of Tropical Biomedicine, 2(3), S1578-S1582. https://doi.org/10.1016/S2221-1691(12)60456-0

Rajkumar, S., & Jebanesan, A. (2009). Larvicidal and oviposition activity of Cassia obtusifolia Linn (Family: Leguminosae) leaf extract against malarial vector, Anopheles stephensi Liston (Diptera: Culicidae). Parasitology Research, 104, 337-340. https://doi.org/10.1007/s00436-008-1197-8

Shanthi, S., & Radha, R. (2020). Antimicrobial and phytochemical studies of Mussaenda frondosa Linn. Leaves. Pharmacognosy Journal, 12(3), 630-635. http://dx.doi.org/10.5530/pj.2020.12.94

Siama, Z., Zosang-Zuali, M., Vanlalruati, A., Jagetia, G. C., Pau, K. S., & Kumar, N. S. (2019). Chronic low dose exposure of hospital workers to ionizing radiation leads to increased micronuclei frequency and reduced antioxidants in their peripheral blood lymphocytes. International Journal of Radiation Biology, 95(6), 697-709. https://doi.org/10.1080/09553002.2019.1571255

Silvério, M. R. S., Espindola, L. S., Lopes, N. P., & Vieira, P. C. (2020). Plant natural products for the control of Aedes aegypti: The main vector of important arboviruses. Molecules, 25(15), 3484. https://doi.org/10.3390/molecules25153484

Stratil, P., Klejdus, B., & Kubáň, V. (2006). Determination of total content of phenolic compounds and their antioxidant activity in vegetables evaluation of spectrophotometric methods. Journal of Agricultural and Food Chemistry, 54(3), 607-616. https://doi.org/10.1021/jf052334j

Suhas, A. P., A. Patil., & Joshi, V. G. (2011). Evaluation of antibacterial and wound healing activity of leaves of Mussaenda frondosa linn. International Journal of Research in Pharmaceutical and Biomedical Sciences, 2(1), 147-154

Tochhawng, L., Deng, S., Pervaiz, S., & Yap, C. T. (2013). Redox regulation of cancer cell migration and invasion. Mitochondrion, 13(3), 246-253. https://doi.org/10.1016/j.mito.2012.08.002

Valgas, C., Souza, S. M. D., Smânia, E. F., & Smânia Jr, A. (2007). Screening methods to determine antibacterial activity of natural products. Brazilian Journal of Microbiology, 38, 369-380. https://doi.org/10.1590/S1517-83822007000200034

Vidyalakshmi, K., Hannah, S., Vasanthi R. & Rajamanickam G. V. (2008). Ethnobotany, Phytochemistry and Pharmacology of Mussaenda Species (Rubiaceae). Ethnobotanical Leaflets, 12, 469-475.

World Health Organization, (2020). Dengue and severe dengue. World Health Organization (WHO), Accessed 3 number November 2020.

Yen, G. C., & Duh, P. D. (1994). Scavenging effect of methanolic extracts of peanut hulls on free-radical and active-oxygen species. Journal of Agricultural and Food Chemistry, 42(3), 629-632. https://doi.org/10.1021/jf00039a005

Zuharah, W. F., Ahbirami, R., Dieng, H., Thiagaletchumi, M., & Fadzly, N. (2016). Evaluation of sublethal effects of Ipomoea cairica Linn. extract on life history traits of dengue vectors. Revista do Instituto Medicina Tropical de Sao Paulo, 58: 44-51. https://doi.org/10.1590/S1678-9946201658044

Cite this article

Dikshit, D., Swain, B., Behuria, A. P., & Venkatesan, A. (2025). Integrated phytochemical and bioefficacy assessment of Mussaenda erythrophylla leaf extracts: Antioxidant, antibacterial and larvicidal potentials. Journal of Medicinal and Aromatic Plant Sciences, 47(2), 71–82. https://doi.org/10.62029/jmaps.v47i2.dikshit

Views
96
Downloads
1
Citations