Journal of Medicinal and Aromatic Plant Sciences

Volume: 37 Issue: 1

  • subscription
  • Review Article

Biotransformation of terpenoids by fungi and bacteria - A literature update

SONALI SETHI, OM PRAKASH, AK PANT

*Corresponding author, Email:[email protected] and [email protected]
Department of Chemistry, College of Basic Sciences and Humanities, G.B., Pant University of Agriculture and Technology,
Pantnagar, U.S. Nagar-263 145,Uttarakhand, India
 

Year: 2015, Page: 1-17, Doi: https://doi.org/10.62029/jmaps.v37i1.Sethi

Received: Nov. 22, 2014 Accepted: June 30, 2015 Published: Dec. 31, 2015

Abstract

Terpenenoids, which are naturally occurring organic compounds of plant and animal origin are presently gaining lot of scientific attention as potent antimicrobial agents. Monoterpenoids in plants have great ecological roles in acting as deterrents against feedings by herbivores, in defences against pathogens and as attractants for pollination. Sesquiterpenoids are also known to possess antibacterial properties with significant, pharmacological and clinical efficiency. Diterpenoids are also known to possess potent pharmacological activities. Several phytoextracts contain biologically active triterpenes which are found to possess anti-inflammatory, virostatic, hepatoprotective and antimycotic effects. Microbial transformation of terpenoids is being extensively studied to produce new metabolites with enhanced biological activity. The regio and stereo selective introduction of functional groups at unactivated carbon atom is achieved by biotransformation which is otherwise difficult with chemical methods. These terpenes and their derivatives can be utilized as chiral synthons for asymmetric synthesis. In present review we focus on the biotransformation of the various class of terpenoids by fungi and bacteria to obtain bioactive compounds from precursor torpene skeletons.
 

Keywords: Bacteria, Biotransformation, Fungi, Terpenes

References

Abraham WR, Ernst L, Arfmann, HA. 1990. Rearranged caryophyllenes by biotransformation with Chaetomium cochliodes. Phytochem 29: 757-76.

Akihisa T, Takamine Y, Yoshizumi K, Tokuda H, Kimura Y, Ukiya M. 2002. Microbial transformations of two lupane-type triterpenes and anti-tumorpromoting effects of the transformation products. J Nat Prod 65: 278–282.

Akihisa T, Watanabe K, Yoneima R, Suzuki T, Kimura Y. 2006. Biotransformation of cycloartane-type triterpenes by the fungus Glomerella fusarioides. J Nat Prod 69: 604-607.

Bastos DZL, Pimentel IC, de Jesus DA, de Oliveira, BH. 2007. Biotransformation of betulinic and betulonic acids by fungi. Phytochem 68: 834–839.

Brown LM, Springer J, Bower M. 1992. Chemical substitution for 1,1,1-trichloroethane and methanol in an industrial cleaning operation. J Hazard Mater 29: 179–88.

Buchanan GO, Reese PB.2001. Biotransformation of diterpenes and diterpene derivatives by Beauveria bassiana ATCC 7159. Phytochem 56: 141-151.

Buchanan GO, Williams LA, Reese PB. 2000. Biotransformation of cadinane sesquiterpenes by Beauveria bassiana ATCC 7159. Phytochem 54: 39-45.

Busmann D, Berger RG. 1994. Bioconversion of terpenoid hydrocarbons by basidiomycetes. In: Maarse H, van der Heij DG, (ed) Trends in Flavour Research, Elsevier, Amsterdam. p 503–507.

Canonica L, Ferrari M, Jommi G, Pagnoni UM, Pelizzoni F, Ranzi BM, Maroni S, Nencini G, Salvatori T. 1967. Microbiological oxidation of triterpenoids. II. 15á-Hydroxyglycyrrhetic and 7â,15á dihydroxyglycyrrhetic acids. Gazzetta Chim Ital 97: 1032-1051.

Chatterjee P, Kouzi SA, Pezzuto JM, Hamann MT. 2000. Biotransformation of the antimelanoma agent betulinic acid by Bacillus megaterium ATCC 13368. Appl Environ Microbiol 66: 3850–3855.

Chatterjee P, Pezzuto JM, Kouzi SA. 1999. Glucosidation of betulinic acid by Cunninghamella species. J Nat Prod 62: 761–763.

Chen ARM, Ruddock PLD, Lamm AS, Reynolds WF, Reese PB. 2005. Stemodane and stemarane diterpenoid hydroxylation by Mucor plumbeus and Whetzelinia sclerotiorum. Phytochem 66: 1898–1902.

Chen G, Yang M, Lu Z, Zhang J, Huang H, Liang Y, Guan S, Song Y, Wu L, Guo D. 2007. Microbial transformation of 20(S)-protopanaxatriol-type saponins by Absidia coerulea. J Nat Prod 70: 1203-1206.

Chen G, Yang M, Song Y, Lu Z, Zhang J, Huang H, Wu L, Guo D. 2008. Microbial transformation of Ginsenoside Rb1 by Acremonium strictum. Appl Microbiol Biotechnol 77: 1345-1350.

Chen Q, Liu J, Zhang H. 2009. The betulinic acid production from betulin through biotransformation by fungi. Enzyme Microb Technol 45: 175–180.

Chen W, Viljoen AM. 2010. Geraniol — A review of a commercially important fragrance material. S Afr J Bot 76: 643–651.

Cheng L, Kim MK, Lee J, Lee Y, Yang D. 2006. Conversion of major ginsenoside Rb1 to ginsenoside F2 by Caulobacter leidyia. Biotechnol Lett 28: 1121-1127.

Cheng L, Na J, Kim M K, Bang M, Yang D.2007. Microbial conversion of Ginsenoside Rb1 to minor Ginsenoside F2 and Gypenoside XVII by Intrasporangium sp. GS603 isolated from soil. J Microbiol Biotechnol 17: 1937-1943.

Cheng ZH, Yu BY, Cordell GA, Qiu SX.2004. Biotransformation of quinovic acid glycosides by microbes: direct conversion of the ursane to the oleanane triterpene skeleton by Nocardia sp. NRRL 5646. Org Lett 6: 3163–3165.

Cheng, L, Na JR, Bang MH, Kim MK, Yang D. 2007. Conversion of major ginsenoside Rb1 to 20(S)-ginsenoside Rg3 by Microbacterium sp. GS514. Phytochem 69: 218-224.

Chi H, Ji G. 2005. Transformation of Ginsenosides Rb1 and Re from Panax ginseng by food microorganisms. Biotechnol Lett 27: 765-771.

Collins DO, Buchanan GO, Reynolds WF, Reese, PB. 2001. Biotransformation of squamulosone by Curvularia lunata ATCC 12017. Phytochem 57: 377–383.

Collins DO, Ruddock PLD, Chiverton de Grasse J, Reynolds WF, Reese PB. 2002.Microbial transformation of cadina-4,10(15)-dien-3-one, aromadendr- 1(10)-en-9-one and methyl ursolate by Mucor plumbeus ATCC 4740. Phytochem 59: 479-488.

de Carvalho CCCR, da Fonseca MMR. 2006. Biotransformation of terpenes. Biotechnol Adv 24: 134–142.

de Carvalho CCCR, van Keulen F, da Fonseca, MMR. 2000. Biotransformation of limonene-1,2-epoxide to limonene-1,2-diol by Rhodococcus erythropolis cells an introductory approach to selective hydrolysis and product separation. Food Technol Biotechnol 38: 181–185.

de Oliveira BH, dos Santos MC, Leal PC.1999. Biotransformation of the diperpenoid, isosteviol, by Aspergillus niger, Penicillium chrysogenum and Rhizopus arrhizus. Phytochem 51: 737-741.

de Oliveira BH, Strapasson RA.1996. Biotransformation of isosteviol by Fusarium verticilloides. Phytochem 43: 393-395.

Degenhardt J, Kollner TG, Gershenzon J.2009. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochem 70: 1621–1637.

Demyttenaere JCR, De Pooter, HL.1996. Biotransformation of geraniol and nerol by spores of Penicillium italicum. Phytochem 41: 1079-1082.

Demyttenaere JCR, Herrera DCM, De Kimpe N. 2000. Biotransformation of geraniol, nerol and citral by sporulated surface cultures of Aspergillus niger and Penicillium sp. Phytochem 55: 363–373.

Devi JR, Bhattacharyya PK. 1978. Molecular rearrangements in the microbiological transformations of terpenes and the chemical logic of microbial processes. J Indian Chem Soc 55: 1131–1137.

Dhavlikar RS, Ehbrecht A, Albroscheit G.1974. Microbial transformations of terpenoids: â-pinene. Dragoco Report 3: 47–49.

Dong JY, Chen YG, Song HC, He YP, Li L, Zhong YP, Zhu YH, Cao J, Wang L, Zhang KQ. 2007. Hydroxylation of nigranoic acid to 6-â-hydroxynigranoic acid by Caryospora carllicarpa YMF1.01026. Chin Chem Lett 18: 165-167.

Dong A, Cui Y, Guo H, Zheng J, Guo D. 2001. Microbiological transformation of ginsenoside Rg1. J Chin Pharm Sci 10: 115-118.

Dong A, Ye M, Guo H, Zheng J, Guo D. 2003. Microbial transformation of ginsenoside Rb1 by Rhizopus stolonifer and Curvularia lunata. Biotechnol Lett 25: 339-344.

Dong J, Chen Y, Song H, Zhu Y, Zhou Y, Li L, He Y, Cao J, Zhang K. 2007. Hydroxylation of the triterpenoid nigranoic acid by the fungus Gliocladium roseum YMF1.00133. Chem Biodivers 4: 112-117.

Draczynska B, Cagara C, Siewinski A, Rymkiewicz A, Zabza A, Leufven A. 1985. Biotransformation of pinenes; XVII. Transformation of á- and â-pinenes by means of Armillariella mellea (honey fungus), a parasite of woodlands. J Basic Microbiol 25: 487–492.

El-Minofi HA. 2005. Biotransformation of ammonium glycyrrhizinate by immobilized Aspergillus terreus. Afr J Mycol Biotechnol 13: 49-58.

Farooq A, Hanson, JR. 1995.The microbiological hydroxylation of some pinane monoterpenoids by Cephalosporium Aphidicola. Phytochem 40: 815-817.

Ferrari M, Pagnoni UM, Pelizzoni F, Ranzi BM, Salvatori T. 1969. Microbiological oxidation of triterpenoids. III. Behavior of 18áglycyrrhetic, liquiritic, and 18á-liquiritic acids. Gazzetta Chimica Italiana 99: 848-862.

Fontanille P, Larroche C. 2003. Optimisation of isonovalal production from á pinene oxide using permeabilized cells of Pseudomonas rhodesiae CIP 107491. Appl Microbiol Biotech 60: 534–540.

Fontanille P, Lefleche A, Larroche C. 2002. Pseudomonas rhodesiae PF1: a new and efficient biocatalyst for production of isonovalal from a-pinene oxide. Biocatal Biotrans 20: 413–421.

Fraatz MA, Riemer SJL, Stober R, Kaspera R, Nimtzd M, Berger RG, Zorn H. 2009. A novel oxygenase from Pleurotus sapidus transforms valencene to nootkatone. J Mol Catal B: Enzymatic 61: 202–207.

Fraga BM, Gonzalez P, Vallejo VG, Guillermo R, Diaz LN. 2010. Biotransformation of 7ahydroxy-and 7-oxo-ent-atis-16-enederivatives by the fungus Gibberella fujikuroi. Phytochem 71: 1313–1321.

Gamero A, Manzanares P, Querol, A, Belloch C. 2011. Monoterpene alcohols release and bioconversion by Saccharomyces species and hybrids. Int J Food Microbiol 145: 92-97.

Gramatica P, Manitto, P, Ranzi, BM, Delbianco, A, Francavilla, M. 1982. Stereospecific reduction of geraniol to R-(+)-citronellol by Saccharomyces cerevisiae. Experimentia 38: 775–776.

Han Y, Sun B, Jiang B, Hu X, Spranger MI, Zhang Y. 2010. Microbial transformation of ginsenosides Rb1, Rb3 and Rc by Fusarium sacchari. J Appl Microbiol doi:10.1111/j.1365-2672.2010.04707.x.

Hanson JR, Hitchcock PB, Takahashi JA.1995. Biotransformation of ent-16-â,19-dihydroxy kaurane by Cephalosporium aphidicola. Phytochem 40: 797-800.

Hanson JR, Truneh A. 1996. The biotransformation of ambrox ansclareolide by Cephalosporium aphidicola. Phytochem 42: 1021-1023.

Haridy MSA, Ahmed AA, Doe M. 2006. Microbiological transformation of two labdane diterpenes, the main constituents of Madia species, by two fungi. Phytochem 67: 1455–1459.

Hashimoto T, Noma Y, Gotoh Y, Tanaka M, Takaoka S, Asakawa Y. 2004. Biotransformation of (-)-maalioxide by Aspergillus niger and Aspergillus cellulosae. Heterocycles 62: 655–666.

Hebda C, Sykula J, Orpiszewski J, Fisher P.1999. Novel metabolite structures from biotransformation of a sesquiterpenoid ketone by selected fungal strains. Hoppe-Seyler’s Biol Chem 372: 337-344.

Hikino H, Nabetani S, Takemoto T. 1969. Biochemical synthesis. III. Microbial transformation of oleanolic acid. 1. Yakugaku Zasshi 89: 809-813.

Hikino H, Nabetani S, Takemoto T. 1972. Microbial transformation of oleanolic acid. Yakugaku Zasshi 92: 891-895.

Hikino H, Nabetani, S, Takemoto, T. 1972. Microbial transformation of oleanolic acid. Yakugaku Zasshi 92: 1528-1533.

Hirata T, Izumi S, Kido T, Shimoi Y, Ikedia, Y.1993. Enantioselective introduction of oxygen functions into alkenes-oxidation of limonene by the cultured suspension cells of Nicotiana tabacum. Pl Tissue Culture Lett 10: 89-91.

Hirschmann GS, Aranda C, Kurina M, Rodríguez JA, Theoduloz C. 2007. Biotransformations of Imbricatolic Acid by Aspergillus niger and Rhizopus nigricans cultures. Molecules 12: 1092-1100.

Ibrahim A, Khalifa SI, Khafagi I, Youssef DT, Khan S, Mesbah M. 2008. Microbial metabolism of biologically active secondary metabolites from Nerium oleander L. Chem Pharm Bull 56: 1253–1258.

Ikeguchi N, Nihira T, Kishimoto A, Yamada Y.1988. Oxidative Pathway from squalene to geranylacetone in Arthrobacter sp. Strain Y-11. Appl Environ Microbiol 54: 381-385.

Jain S, Shirode A, Yacoub S, Barbo A, Sylvester PW, Huntimer E, Halaweish F, El Sayed KA. 2007. Biocatalysis of the anticancer sipholane triterpenoids. Planta Med 73: 591-596.

Kawamoto H, Asada Y, Sekine H, Furuya T.1998. Biotransformation of artemisinic acid by cultured cells of Artemisia annua. Phytochem 48: 1329–1333.

Kim MK, Lee JW, Lee KY, Yang DC. 2005. Microbial conversion of major ginsenoside Rb(1) to pharmaceutically active minor ginsenoside rd. J Microbiol 43: 456–462.

King A, Dickinson, JR. 2000. Biotransformation of monoterpene alcohols by Saccharomyces cerevisiae, Torulaspora delbrueckii and Kluyveromyces lactis. Yeast 16: 499–506.

Kirchner EM. 1994. Environment, health concerns force shift in use of organic solvents. Chem Eng News 72: 13– 20.

Kouzi SA, Chatterjee P, Pezzuto JM, Hamann MT. 2000. Microbial transformations of the antimelanoma agent betulinic acid. J Nat Prod 63: 1653–1657.

Kragl U, Eckstein M, Kaftzik N. 2002. Enzyme catalysis in ionic liquids. Curr Opin Biotechnol 13: 565– 571.

Kuramoto T, Ito Y, Oda M, Tamura Y, Kitahata S. 1994. Microbial production of glycyrrhetic acid 3-O-mono-â-D-glucuronide from glycyrrhizin by Cryptococcus magnus Mg-27. Biosci Biotechnol Biochem 58: 455-458.

Kutney JP, Wagner J, Hewitt GM. 1994. Synthesis of â-cyperone via fungal hydroxylation of thujone-derived tricyclic cyclopropanes. Helv Chim Acta 77: 1701-1720.

Lamm AS, Chen, ARM, Reynolds, WF, Reese PB. 2009. Fungal hydroxylation of (“)-santonin and its analogues. J Mol Catal B:Enzymatic 59: 292-296.

Lamm AS, Reynolds WF, Reese PB. 2006.Bioconversion of Stemodia maritime diterpenes and derivatives by Cunninghamella echinulata var. elegans and Phanerochaete chrysosporium. Phytochem 67: 1088-1093.

Langenheim, JH. 1994. Higher plant terpenoids: A phytocentric overview of their ecological roles. J Chem Ecol 20: 1223-1280.

Laskin AI, Grabowich P, Meyers CDL, Fried J. 1964. Transformations of eburicoic acid. V. Cleavage of ring A by the fungus Glomerella fusarioides. J Med Chem 7: 406-409.

Lee SS, You BJ, Wang KC. 1993. Microbial transformation of ceanothic acid and derivatives by Mycobacterium sp. (NRRL B-3805). J Chin Chem Soc (Taipei, Taiwan) 40: 213-216.

Lee SS, Young LH, Wang KC. 1991. Microbial transformation of cycloartenol and 24-methylenecycloartanol III. Minor C19 steroid products. Zhonghua Yaoxue Zazhi 43: 291-296.

Lee SS, Young LH, Wang KC. 1991. Microbial transformation of cycloartenol, 24-methylenecycloartanol, and lanosterol, II. Isolation and characterization of C19 steroids. J Nat Prod 54: 178-183.

Leipold D, Wunsch G, Schmidt M, Bart HJ, Bley T, Neuhaus HE, Bergmann H, Richling E, Muffler K, Ulber R. 2010. Biosynthesis of ursolic acid derivatives by microbial metabolism of ursolic acid with Nocardia sp. strains–Proposal of new biosynthetic pathways. Process Biochem 45: 1043–1051.

Leon R, Fernandes P, Pinheiro HM, Cabral JMS. 1998. Whole-cell biocatalysis in organic media. Enzyme Microb Technol 23: 483–500.

Li FY, Cang PR, Huang SS, Zhang BJ, Xin XL, Yao JH, Zhou Q, Tian Y, Deng S, Ma XC. 2011. Microbial transformation of deoxyandrographolide by Cunninghamella echinulat. J Mol Catal B: Enzymatic 68: 187–191.

Linares D, Martinez D, Fontanille P, Larroche C. 2008. Production of trans-2- methyl-5-isopropylhexa-2,5-dienoic acid by Pseudomonas rhodesiae CIP 107491. Bioresour Technol 99: 4590–4596.

Maatooq G, El-Sharkawy S, Afifi M S, Rosazza JPN 1995. Microbial transformation of cucurbitacin E 2-O-â-D-glucopyranoside. J Nat Prod 58: 165-171.

Maatooq GT, Hoffmann JJ. 2002. Microbial transformation of a mixture of argentatin A and incanilin. Zeitschrift fuer Naturforschung, C. Zeitschrift fuer Naturforschung, C: J Biosci 57: 489-495.

Maatooq GT. 2003. Microbiological and chemical transformations of argentatin B. Zeitschrift fuer Naturforschung C. J Biosci 58: 249-255.

Martin DM, Gershenzon J, Bohlmann, J.2003. Induction of Volatile Terpene Biosynthesis and Diurnal Emission by Methyl Jasmonate in Foliage of Norway Spruce. Pl Physiol 132: 1586–1599.

Martin GDA, Reynolds WF, Reese PB 2004. Investigation of the importance of the C-2 oxygen function in the transformation of stemodin analogues by Rhizopus oryzae ATCC 11145. Phytochem 65: 701-710.

Martin GDA, Reynolds WF, Reese PB.2005. Stemodane skeletal rearrangement: chemistry and microbial transformation. Phytochem 66: 901–909.

Martin GDA. 2010. Biotransformation reactions by Rhizopus spp. Curr Org Chem 14: 1-14.

Maurs M, Azerad R, Cortes M, Aranda G, Delahaye MB, Ricard L. 1999. Microbial hydroxylation of natural drimenic lactones. Phytochem 52: 291-296.

Mirata MA, Heerd D, Schrader J. 2009. Integrated bioprocess for the oxidation of limonene to perillic acid with Pseudomonas putida DSM 12264. Process Biochem 44: 764–771.

Miyazawa M, Honjo Y, Kameoka, H. 1997. Biotransformation of the sesquiterpenoid âselinene using the plant pathogenic fungus Glomerella cingulata as a biocatalyst. Phytochem 44: 433-436.

Miyazawa M, Honjo Y, Kameoka, H. 1998. Biotransformation of the sesquiterpenoid(+)- ã-Gurjunene using a plant pathogenic fungus, Glomerella cingulata as a biocatalyst. Phytochem 49: 1283-1285.

Miyazawa M, Nankai H, Kameoka H. 1995. Biotransformations of (-)-á-bisabolol by plant pathogenic fungus, Glomerella cingulata. Phytochem 39: 1077-1080.

Miyazawa M, Nankai H, Kameoka H. 1995. Biotransformations of acyclic terpenoids (±)-cis-nerolidol and nerylacetone by plant pathogenic fungus, Glomerella cingulata. Phytochem 40: 1133-1137.

Miyazawa M, Suzuki Y, Kameoka, H. 1997. Biotransformation of (-)-cis-myrtanol and (+)-trans-myrtanol by plant pathogenic fungus, Glomerella cingulata. Phytochem 45: 935-943.

Muffler K, Leipold D, Scheller MC, Haas C, Steingroewer J, Bley, T, Neuhaus, HE, Mirata MA, Schrader J, Ulber, R. 2011. Biotransformation of triterpenes. Process Biochem 46: 1–15.

Musharraf SG, Najeeb A, Khan S, Pervez M, Ali RA, Choudhary MI. 2010. Microbial transformation of 5á-hydroxycaryophylla-4(12), 8(13)-diene with Macrophomina phaseolina. J Mol Catal B: Enzymatic 66: 156–160.

Nakajima K, Sato A, Misono T, Iida T. 1981. Microbial oxidation of isoprenoid hydrocarbons. Part III. Microbial oxidation of the isoprenoid hydrocarbon squalene. Nippon Nogei Kagaku Kaishi 55: 1187-1195.

Nunes FM, dos Santos GF, Saraiva NN, Trapp MA, de Mattos MC, Oliveira, MCF, Filho ER. 2013. New fungi for whole-cell biotransformation of carvone enantio-mers. Novel p-menthane-2,8,9-triols production. Appl Catal A 468: 88-94.

Onken J, Berger RG. 1999. Effects of R-(+)-limonene on submerged cultures of the terpene transforming basidiomycete Pleurotus sapidus. J Biotech 69: 163–168.

Parra A, Rivas F, Garcia-Granados A, Martinez A. 2009. Microbial transformation of triterpenoids. Mini-Rev Org Chem 6: 307–320.

Pfruender H, Amidjojo M, Kragl U, Weuster-Botz D. 2004. Efficient wholecell biotransformation in a biphasic ionic liquid/water system. Angew Chem Int Ed 43: 4529–4531.

Pichersky E. 2006. Biosynthesis of Plant Volatiles: Nature’s Diversity and Ingenuity. Science 311: 808–811.

Pimentel MR, Molina G, Bertucci, TCP, Pastore GM. 2012. Biotransformation of citronellol in rose oxide by Pseudomonas spp. Chem Eng Trans 27: 295-300.

Qian LW, Zhang J, Liu JH, Yu BY. 2009. Direct microbial-catalyzed asymmetric [alpha]-hydroxylation of betulonic acid by Nocardia sp. NRRL 5646. Tetrahedron Lett 50: 2193–2195.

Rueda MGM, Guerrini A, Giovannini, PP, Medici A, Grandini A, Sacchetti G, Pedrini P.2013. Biotransformations of terpenes by fungi from amazonian citrus p lan ts. Chem Biodivers 10: 1909–1919.

Sakano K, Ohshima M. 1986. Microbial conversion of glycyrrhetinic acids. Part II. Microbial conversion of 18â-glycyrrhetinic acid and 22á-hydroxy-18â-glycyrrhetinic acid by Chainia antibiotica. Agric Biol Chem 50: 1239-1245.

Sakano K, Ohshima M. 1986. Structures of conversion products formed from 18âglycyrrhetinic acid by Streptomyces sp. G-20. Agric Biol Chem 50: 763-766.

Seo C, Yamada Y, Takada N, Okada H. 1981. Hydration of squalene and oleic acid by Corynebacterium sp. S-401. Agric Biol Chem 45: 2025-2030.

Seo CW, Yamada Y, Takada N, Okada H.1983. Microbial transformation of squalene: terminal methyl group oxidation by Corynebacterium sp. Appl Environ Microbiol 45: 522-525.

Setchell CH, Bonner JF, Wright SJ, Caunt P, Baker PB. 1985. Microbial transformation of squalene: formation of a novel ketone from squalene by a Rhodococcus sp. Appl Microbiol Biotechnol 21: 255-257.

Shirane N, Hashimoto Y, Ueda K, Takenaka H, Katoh K. 1996. Ring-A cleavage of 3-oxoolean-12-en-28-oic acid by the fungus Chaetomium longirostre. Phytochem 43: 99–104.

Shukla OP, Moholay MN, Bhattacharyya PK.1968. Microbiological transformations of terpenes: Part X-Fermentation of á- & âpinenes by a soil pseudomonad (PL-strain). Indian J Biochem 5: 79–91.

Silva EA, Takahashi, JA, Boaventura MAD, Oliveira AB. 1999. The biotransformation of ent-kaur-16-en-19-oic acid by Rhizopus stolonifer. Phytochem 52: 397-400.

Speelmans G, Bijlsma A, Eggink G. 1998. Limonene bioconversion to high concentrations of a single and stable product, perillic acid, by a solvent-resistant Pseudomonas putida strain. Appl Microbiol Biotechnol 50: 538–543.

Suhara Y, Itoh S, Ogawa M, Yokose K, Sawada T, Sano T, Ninomiya R, Maruyama HB. 1981. Regioselective 10-hydroxylation of patchoulol, a sesquiterpene, by Pithomyces species. Appl Environ Microbiol 42: 187–191.

Thompson ML, Marriott R, Dowle A, Grogan G. 2010. Biotransformation of â-myrcene to geraniol by a strain of Rhodococcus erythropolis isolated by selective enrichment from hop plants. Appl Microbiol Biotechnol 85: 721–730.

Tian Y, Guo H, Han J, Guo D. 2005. Microbial transformation of 20(S)-protopanaxatriol by Mucor spinosus. J Nat Prod 68: 678-680.

van Dyk MS, van Rensburg E, Re nsbu rg IPB, Moleleki N. 1998. Biotransformation of monoterpenoid ketones by yeasts and yeast-like fungi. J Mol Catal B:Enzymatic 5: 149–154.

Wang J, Ouyang J, Shen J, Fan W. 2006. Manufacture of C11 á- hydroxyoleanolic acid by hydroxylase from Aspergillus ochraceus NG1203. Shengwu Jiagong Guocheng 4: 51-55.

Wang KC, Wang P, Lee S. 1997. Microbial transformation of protopanaxadiol and protopanaxatriol derivatives with Mycobacterium sp. J Nat Prod 60: 1236-1241.

Wang KC, Young LH, Wang Y, Lee SS. 1990. Microbial transformation of cycloartenol and 24-methylenecycloartanol. Tetrahedron Lett 31: 1283-1286.

Wang Y, Tan TK, Tan GK, Connolly JD, Harrison LJ. 2006. Microbial transformation of the sesquiterpenoid (-)-maalioxide by Mucor plumbeus. Phytochem 67: 58–61.

Wang ZS, Lie FLC, Lim E, Li, KY, Lia Z. 2009. Regio- and stereoselective allylic hydroxylation of d-limonene to (+)-transcarveol with Cellulosimicrobium cellulans EB-8-4. Adv Synth Catal 351: 1849–1856.

Wolken W, Van Der Werf, M. 2001. Geraniol biotransformation-pathway in spores of Penicillium digitatum. Appl Microbiol Biotechnol 57: 731–737.

Xin X, Liu Y, Ye M, Guo H, Guo D. 2006. Microbial transformation of glycyrrhetinic acid by Mucor polymorphosporus. Planta Med 72: 156–61.

Yamada Y, Seo C, Okada, H. 1981. Asymmetric synthesis of (-)-(S)-squalene-2,3-epoxide. Agric Biol Chem 45: 1741-1742.

Yoshida K, Furihata K, Habe H, Yamane H, Omori T. 2001. Microbial transformation of 18â-glycyrrhetinic acid by Sphingomonas paucimobilis strain G5. Biotechnol Lett 23: 1619-1624.

Zea L, Moreno J, Ortega JM, Medina, M. 1995. Content of free terpenic compounds in cells and musts during vinification with three Saccharomyces cerevisiae races. J Agricult Food Chem 43: 1110–1114.

Zhang J, Cheng ZH, Yu BY, Cordell GA, Qiu SX. 2005. Novel biotransformation of pentacyclic triterpenoid acids by Nocardia sp. NRRL 5646. Tetrahedron Lett 46: 2337-2340.

Zhang J, Guo H, Tian Y, Liu P, Li N, Zhou J, Guo D. 2007. Biotransformation of 20(S)-protopanaxatriol by Mucor spinosus and the cytotoxic structure activity relationships of the transformed products. Phytochem 68: 2523-2530.

Zhu JH, Yu RM, Yang L, Hu YS, Song LY, Huang YJ, Li YM, Guan SX. 2010. Novel biotransformation processes of dihydroartemisinic acid and artemisinic acid to their hydroxylated derivatives by two plant cell culture systems. Process Biochem 45: 1652-1656.

Zoecklein BW, Marcy JE, Williams JM, Jasinski Y. 1997. Effect of native yeasts and selected strains of Saccharomyces cerevisiae on glycosyl glucose, potential volatile terpenes and selected aglycones of white Riesling (Vitis vinifera L.) wines. J Food Comp Anal 10: 55-65.

Zorn H, Neuser F, Berger RG. 2004. Degradation of á-pinene oxide and [2H7]-2,5,6-trimethyl-hept-(2E)-enoic acid by Pseudomonas fluorescens NCIMB 11761. J Biotech 107: 255-263.
 

Cite this article

Sonali Sethi, OM Prakash, AK Pant. 2015. Biotransformation of terpenoids by fungi and bacteria - A literature update. J Med Aromat Plant Sci 37: 1-17.

Views
191
Downloads
1
Citations